首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Chick duodenal mucosa contains an endogenous factor which is capable to inhibit selectively a homologous polyamine-sensitive protein kinase. The inhibitor was partially purified and characterized, and it was found to contain typical mucopolysaccharidic components.Glycosidases digestion studies, selective degradation analysis and spectrophotometric titrations with metachromatic dyes indicated that the inhibitor preparation contained two major moieties identified as heparin-like and heparan sulfate-like structures. In chick intestine the inhibitor was specific for polyamine-sensitive protein kinase since selectively interacted with it and was inert towards other cAMP-independent and cAMP-dependent protein kinases. The inhibitory effect of the endogenous factor was counteracted by naturally occurring polyamines such as spermine. The order of potency of various polyamines was: spermine > thermine spermidine diamines. The release of inhibition by addition of physiological concentrations of spermine was also apparent when using cytosolic proteins as endogenous phosphate acceptors. These results suggest that a possible role of polyamine in the regulation of polyamine-sensitive protein kinase in the intestine is to protect the enzyme from the inhibitory action of endogenous heparinoids.  相似文献   

2.
Purification and characterization of a protein kinase from pine pollen   总被引:1,自引:0,他引:1  
A kinase phosphorylating casein and phosvitin has been purified from pine pollen by a three-step procedure involving DEAE-cellulose chromatography, affinity chromatography on casein-Sepharose and Sephadex G-100. A purification of about 2000 fold was obtained by this procedure. The kinase is affected neither by cyclic nucleotides nor by Ca2+-calmodulin, whereas it is strongly inhibited by heparin. Using this purification procedure, we have isolated protein kinase exhibiting phosphorylating activity towards casein in the pollen of many other Pinaceae species.  相似文献   

3.
A protein kinase that phosphorylates histones and polysomal proteins was partially purified from mouse liver cytosol. The active enzyme has a molecular mass of 100 kDa and a phosphorylatable subunit of 54 kDa. Biochemical as well as immunological data suggest that the enzyme is a heterodimer composed of the catalytic subunit of cyclic AMP-dependent protein kinase and the RII regulatory subunit. This RC form does not seem to dissociate upon activation with 3, 5 cyclic AMP and exhibits identical specificity as the classical cAMP-dependent protein kinase (2.7.1.37). The enzyme is affected by the 3, 5 cyclic phosphates of adenosine mainly, but also of guanosine, uridine and cytidine in a substrate-dependent manner. Cyclic nucleotides slightly stimulate phosphate incorporation into histones, while phosphorylation of polysomal proteins in intact polysomes is dramatically increased. The substrate- specific stimulatory effects of 3, 5 cyclic nucleotides are due to repression of the inhibition exerted upon the reaction, by negatively charged macromolecules such as RNA, DNA and to a lesser extent heparin.  相似文献   

4.
A synthetic tetradecapeptide derived from the phosphorylation site of the beta-subunit of phosphorylase kinase (Arg-Thr-Lys-Arg-Ser-Gly-Ser-Val-Tyr-Glu-Pro-Leu-Lys-Ile) is a highly efficient substrate for the cAMP-dependent protein kinase, exhibiting a 36% decrease in the intrinsic tyrosine fluorescence on phosphorylation. The fluorescence changes in continuous assays were monitored to demonstrate the roles of protein kinase effectors (cAMP, the type II regulatory subunit, and the 8000-Da heat-stable inhibitor) in the regulation of the enzyme and to determine Km and Vmax. The phosphorylation reaction requires 1 mol ATP/mol peptide. Amino acid analysis demonstrates the presence of phosphoserine in the phosphorylated peptide. Auxiliary experiments show that tyrosine phosphorylation can also be detected fluorometrically and distinguished from serine or threonine phosphorylation.  相似文献   

5.
Platelets are the primary players in both thrombosis and hemostasis.Cyclic AMP (cAMP) and cAMP-dependent protein kinase (PKA) are important signaling molecules in the regulation of platelet function,such as adhesion,aggregation,and secretion.Elevation of intracellular cAMP,which induces the activation of PKA,results in the inhibition of platelet function.Thus,tight control of the intracellular cAMP/PKA signaling pathway has great implications for platelet-dependent hemostasis and effective cardiovascular therapy.In this review,we summarize the PKA substrates and their contributions to platelet function,especially the advancing understanding of the cAMP/PKA-dependent signaling pathway in platelet physiology.In addition,we suggest the possibility that cAMP/PKA is involved in the platelet procoagulant process and receptor ectodomain shedding.  相似文献   

6.
Platelets are the primary players in both thrombosis and hemostasis. Cyclic AMP (cAMP) and cAMP-dependent protein kinase (PKA) are important signaling molecules in the regulation of platelet function, such as adhesion, aggregation, and secretion. Elevation of intracellular cAMP, which induces the activation of PKA, results in the inhibition of platelet function. Thus, tight control of the intracellular cAMP/PKA signaling pathway has great implications for platelet-dependent hemostasis and effective cardiovascular therapy. In this review, we summarize the PKA substrates and their contributions to platelet function, especially the advancing understanding of the cAMP/PKA-dependent signaling pathway in platelet physiology. In addition, we suggest the possibility that cAMP/PKA is involved in the platelet procoagulant process and receptor ectodomain shedding.  相似文献   

7.
Purified rat epididymal nuclei possess a cyclic AMP-independent protein kinase activity that phosphorylates of casein. The enzymic activity was solubilized by treating intact nuclei with 1 M (NH4)2SO4. One major peak of kinase activity was obtained when the solubilized enzyme preparation was subjected to diethylaminoethyl-Sephadex chromatography. The activity of the kinase was dependent on a bivalent metal ion such as Mg2+, Co2+, Ca2+ or Mn2+. NaCl (0.3 M) caused a further activation (approx. 200%) of the metal (Co2+)-dependent enzyme. The apparentK m values of the enzyme for casein, ATP and Co2+ are approx. 0.6 mg/ml, 10 ΜM and 2.2 mM respectively. The enzyme was maximally active at pH 5.5. The enzyme showed high specificity for phosphorylation of the acidic protein casein but did not phosphorylate basic proteins, such as histones and protamine. The properties of the nuclear protein kinase were clearly different from those of the cytosolic enzymes previously characterized.  相似文献   

8.
The effects of cAMP-dependent protein kinase A and protein kinase C on cell-cell communication have been examined in primary ovarian granulosa cells microinjected with purified components of these two regulatory cascades. These cells possess connexin43 ( 1)-type gap junctions, and are well-coupled electrotonically and as judged by the cell-to-cell transfer of fluorescent dye. Within 2–3 min after injection of the protein kinase A inhibitor (PKI) communication was sharply reduced or ceased, but resumed in about 3 min with the injection of the protein kinase A catalytic subunit. A similar resumption also occurred in PKI-injected cells after exposure to follicle stimulating hormone. Microinjection of the protein kinase C inhibitor protein caused a transient cessation of communication that spontaneously returned within 15–20 min. Treatment of cells with activators of protein kinase C, TPA or OAG for 60 min caused a significant reduction in communication that could be restored within 2–5 min by the subsequent injection of either the protein kinase C inhibitor or the protein kinase A catalytic subunit. With a longer exposure to either protein kinase C activator communication could not be restored and this appeared to be related to the absence of aggregates of connexin43 in membrane as detected immunologically. In cells injected with alkaline phosphatase communication stopped but returned either spontaneously within 20 min or within 2–3 min of injecting the cell with either the protein kinase A catalytic subunit or with protein kinase C. When untreated cells were injected with protein kinase C communication diminished or ceased within 5 min. Collectively these results demonstrate that cell-cell communication is regulated by both protein kinase A and C, but in a complex interrelated manner, quite likely by multiple phosphorylation of proteins within or regulating connexin-43 containing gap junctions.Abbreviations C catalytic subunit of protein kinase A - CKI protein kinase C inhibitor protein - Cx connexin protein - dbcAMP N6,2-O-dibutyryladenosine 3:5-cyclic monophosphate - OAG 1-oleoyl-2-acetyl-sn-glycerol - protein kinase A cAMP-dependent protein kinase - protein kinase C Ca2+-sensitive phospholipid-dependent protein kinase - PKI protein kinase A inhibitor protein - R regulatory subunit of protein kinase A - TRA 12-O-tetradecanoylphorbol-13-acetate - 8Br-cAMP 8-bromoadenosine 3:5 cyclic monophosphate  相似文献   

9.
Summary Casein kinase II (CKII) has been purified from bovine heart tissue. Under conditions of low salt (0.05 M NaCl, 10 MM MgCl2), CKII forms structured aggregates that appear as filaments similar to results obtained withDrosophila CKII [C.V.C. Glover (1986) J. Biol. Chem. 261:14349]. The aggregates have been analyzed by sucrose density gradients and electron microscopy. Filament preparations of the enzyme have reduced but measurable kinase activity. The addition of salt restores activity. Various modulators of CKII activity have been examined with the enzyme in the low salt, polymerized form. The polyamines spermine or spermidine stimulated CKII activity as much as six fold; putrescine had no effect. Polylysine of varying lengths activated CKII 4–6 fold. Melittin, the basic polypeptide from bee venom, was also an effective activator. Activation of filament preparations was also observed if the CKII specific peptide (RRREEETEEE) was used as the substrate in place of casein. These results with filament preparations provide an alternative in vitro system for the study of possible regulatory aspects of CKII.  相似文献   

10.
The phosphorylation of an Mr 82,000 protein (p82) in the Triton X-100 extract of the particulate fraction of mouse epidermis is dependent on the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) or diacylglycerol and phospholipid and, contrary to protein kinase C (PKC)-catalyzed phosphorylation, cannot be activated by calcium plus phospholipid. The novel p82 kinase differs also from PKC in many other respects, such as substrate specificity, turnover rate, and sensitivity to inhibitors. The p82 kinase can be separated from PKC by chromatography on phenyl sepharose and does not react with a polyclonal PKC antiserum. Like PKC, the novel kinase phosphorylates its substrate on threonine and serine, but not on tyrosine. Similar to PKC, the epidermal p82-kinase system is down-modulated after TPA treatment of mouse skin, with a half-life of around 5 h. Down-modulation is also accomplished by the phorbol ester RPA, but not by the Ca2+ ionophore A23187, and it is inhibited by the immunosuppressive agent cyclosporin A. In addition to down-modulation, TPA treatment of the animals activates a phosphatase that dephosphorylates phosphorylated p82 in the extract of the particulate fraction.  相似文献   

11.
近年来,蛋白激酶研究进展较快,本文综述蛋白激酶的种类、结构、细胞定位,讨论几种植物蛋白激酶及其与信号转导的关系。  相似文献   

12.
植物蛋白激酶研究进展   总被引:5,自引:0,他引:5  
近年来,在分子生物学技术不断完善和在酵母与动物蛋白激酶研究的基础上,植物蛋白激酶的研究已取得了很大的进展。就近十年来国内外学者对植物蛋白激酶的发现,家族分类,磷酸化过程及其生理功能等方面的研究进行综述。最后分析了存在的问题并对今后的研究提出了展望。  相似文献   

13.
14.
A protein kinase, type NII, has been purified from wheat germ chromatin. The enzyme, which uses both ATP and GTP as phosphoryl donors, catalyzes the phosphorylation of casein, phosvitin and E. coli RNA polymerase, but not of histone proteins. Polypeptide bands at 46 kDa, 37 kDa and 25 kDa were estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autophosphorylation of the 25 kDa subunit was observed following incubation of the purified kinase with (-32P)ATP and (-32P)GTP.  相似文献   

15.
Various histone fractions from several sources differ markedly in their degree of dependence on protein kinase stimulatory modulator for maximum phosphorylation by rat liver cyclic GMP-dependent protein kinase in the presence of cyclic GMP. DEAE-cellulose and QAE-Sephadex chromatography of arginine-rich and mixed histones resulted in the histones displaying increased dependence on the modulator. This increased dependence was apparently due to the removal of contaminating modulator as heat-stable modulator activity could be eluted from the DEAE-cellulose column. Lysine-rich histone was not markedly dependent on the modulator before or after QAE-Sephadex chromatography.  相似文献   

16.
There is general agreement that the connexin43 gap junction protein is a substrate for phosphorylation by protein kinase C but there is no similar consensus regarding the action of protein kinase A. Our previous studies demonstrated that channels formed by connexin43 were reversibly gated in response to microinjected protein kinase A and protein kinase C, but we did not determine whether these effects involved direct action on the connexin43 protein. Using a combination of in vivo metabolic labeling and in vitro phosphorylation of recombinant protein and synthetic peptides, we now find that connexin43 is a relatively poor substrate for purified protein kinase A compared to protein kinase C, but that phosphorylation can be accelerated by 8-Br-cAMP (8-bromoadenosine 3,5-cyclic monophosphate) which also enhances connexin43 synthesis but at a much slower rate than phosphorylation. Phosphorylation of a critical amino acid, Ser364, by protein kinase A, appears to be necessary for subsequent multiple phosphorylations by protein kinase C. However, protein kinase C can phosphorylate connexin43 at a reduced level in the absence of prior phosphorylation. The results suggest that the correct regulation of channels formed by connexin43 may require sequential phosphorylations of this protein by protein kinase A and protein kinase C.  相似文献   

17.
18.
The D(1) dopamine receptor (D(1) DAR) is robustly phosphorylated by multiple protein kinases, yet the phosphorylation sites and functional consequences of these modifications are not fully understood. Here, we report that the D(1) DAR is phosphorylated by protein kinase C (PKC) in the absence of agonist stimulation. Phosphorylation of the D(1) DAR by PKC is constitutive in nature, can be induced by phorbol ester treatment or through activation of Gq-mediated signal transduction pathways, and is abolished by PKC inhibitors. We demonstrate that most, but not all, isoforms of PKC are capable of phosphorylating the receptor. To directly assess the functional role of PKC phosphorylation of the D(1) DAR, a site-directed mutagenesis approach was used to identify the PKC sites within the receptor. Five serine residues were found to mediate the PKC phosphorylation. Replacement of these residues had no effect on D(1) DAR expression or agonist-induced desensitization; however, G protein coupling and cAMP accumulation were significantly enhanced in PKC-null D(1) DAR. Thus, constitutive or heterologous PKC phosphorylation of the D(1) DAR dampens dopamine activation of the receptor, most likely occurring in a context-specific manner, mediated by the repertoire of PKC isozymes within the cell.  相似文献   

19.
Differential effects of polyamines on rat thyroid protein kinase activities   总被引:1,自引:0,他引:1  
Ornithine decarboxylase, the rate-limiting enzyme in polyamine biosynthesis, has been shown to be regulated in thyroid by thyrotropin both in vivo and in vitro. Little, however, is known of the role of polyamines in thyroid cell function. Since studies in other tissues suggest that polyamines may influence protein phosphorylation, we studied the effect of the polyamines on various protein kinase activities in rat thyroid. Putrescine, spermidine, and spermine inhibit cyclic-AMP-dependent histone H1 kinase activity when measured in the cytosol fraction of rat thyroid; this effect is largely reproduced by NaCl concentrations of equivalent ionic strength. Both spermidine and spermine effect a 1.6-2.4-fold increase in cytosolic cyclic-AMP-independent (messenger-independent) casein kinase activity; stimulation by both polyamines is maximal at 5mM. A similar profile of stimulation is observed for messenger-independent casein kinase activity in crude nuclear preparations. Sodium chloride fails to stimulate both cytosolic and nuclear messenger-independent casein kinase activities at ionic strength equivalent to the spermine concentrations used. Spermine, but not putrescine, spermidine, or sodium chloride, inhibits calcium/phospholipid-dependent protein kinase C activity in cytosol extracts partially purified by DEAE chromatography. These findings suggest that regulation of protein kinase(s) by polyamines may represent a proximal locus (i) of action of thyrotropin-regulated ornithine decarboxylase activity in thyroid.  相似文献   

20.
Phosphorylation and dephosphorylation of ribosomal proteins have been suggested to participate in the regulation of protein synthesis in eukaryotic organisms. The present research focuses on the purification and partial characterization of a protein kinase from maize ribosomes that specifically phosphorylates acidic ribosomal proteins. Ribosomes purified from maize axes were used as the enzyme source. Purification of ribosomes was performed by centrifugation through a 0.5 M sucrose, 0.8 M KCl cushion. A protein kinase activity present in this fraction was released by extraction with 1.5 M KCl and further purified by diethylaminoethyl cellulose column chromatography. A peak containing protein kinase activity was eluted around 400 m M KCl. Analysis of this fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one band of 38 kDa molecular mass, which cross-reacted in a western blot with antibodies raised against proteins from the large ribosomal subunit. This enzyme specifically phosphorylates one of the acidic ribosomal proteins (P2). Its activity is inhibited by Ca2+ and Zn2+ and is activated by Mg2+, polylysine and spermine. The relevance of this protein kinase in reinitiating the protein synthesis process during germination is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号