首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Folding of many cellular proteins is facilitated by molecular chaperones. Analysis of both prokaryotic and lower eukaryotic model systems has revealed the presence of ribosome-associated molecular chaperones, thought to be the first line of defense against protein aggregation as translating polypeptides emerge from the ribosome. However, structurally unrelated chaperones have evolved to carry out these functions in different microbes. In the yeast Saccharomyces cerevisiae, an unusual complex of Hsp70 and J-type chaperones associates with ribosome-bound nascent chains, whereas in Escherichia coli the ribosome-associated peptidyl-prolyl-cis-trans isomerase, trigger factor, plays a predominant role.  相似文献   

2.
Stability and degradation of mRNA   总被引:13,自引:0,他引:13  
Differential mRNA stability plays an important role in the regulation of gene expression. Several recent advances have helped to define the general pathways by which mRNA is degraded in prokaryotic cells, although many details remain to be elucidated. Much less is known about the pathways of degradation in eukaryotic cells, but recent studies on specific systems have highlighted both differences from and similarities to prokaryotic pathways.  相似文献   

3.
Kushner SR 《IUBMB life》2004,56(10):585-594
Over the past 15 years considerable progress has been made in understanding the molecular mechanisms of mRNA decay in both prokaryotes and eukaryotes. Interestingly, unlike other important biological reactions such as DNA replication and repair, many features of mRNA decay differ between prokaryotes or eukaryotes. Even when a particular enzyme like poly(A) polymerase has been conserved, polyadenylation of mRNAs in prokaryotes appears to serve a very different function than it does in eukaryotes. Furthermore, while mRNA degrading multiprotein complexes have been identified in both prokaryotes and eukaryotes, their composition and biochemical mechanisms are significantly different. Accordingly, this review seeks to provide a concise comparison of our current knowledge regarding the pathways of mRNA decay in two model organisms, the prokaryote Escherichia coli and the eukaryote Saccharomyces cerevisiae.  相似文献   

4.
The stability of mRNAs is an important point in the regulation of gene expression in eukaryotes. The mRNA turnover pathways have been identified in yeast and mammals. However, mRNA turnover pathways in trypanosomes have not been widely studied. Deadenylation is the first step in the major mRNA turnover pathways of yeast and mammals. To better understand mRNA degradation processes in these organisms, we have developed an in vitro mRNA turnover system that is functional for deadenylation. In this system, addition of poly(A) homopolymer activates the deadenylation of poly(A) tails. The trypanosomal deadenylase activity is a 3'-->5' exonuclease specific for adenylate residues, generates 5'-AMP as a product, is magnesium dependent, and is inhibited by neomycin B sulfate. These characteristics suggest similarity with other eukaryotic deadenylases. Furthermore, this activity is cap independent, indicating a potential difference between the trypanosomal activity and PARN, but suggesting similarity to Ccr4p/Pop2p activities. Extracts immunodepleted of Pab1p required the addition of poly(A) competition to activate deadenylation. Trypanosomal Pab1p functions as an inhibitor of the activity under in vitro conditions. Pab1p appears to be one of several mRNA stability proteins in trypanosomal extracts.  相似文献   

5.
By its ability to engage in a variety of redox reactions and coordinating metals, cysteine serves as a key residue in mediating enzymatic catalysis, protein oxidative folding and trafficking, and redox signaling. The thiol redox system, which consists of the glutathione and thioredoxin pathways, uses the cysteine residue to catalyze thiol-disulfide exchange reactions, thereby controlling the redox state of cytoplasmic cysteine residues and regulating the biological functions it subserves. Here, we consider the thiol redox systems of Escherichia coli and Saccharomyces cerevisiae, emphasizing the role of genetic approaches in the understanding of the cellular functions of these systems. We show that although prokaryotic and eukaryotic systems have a similar architecture, they profoundly differ in their overall cellular functions.  相似文献   

6.
Genetic recombination is a basic cellular process required for altering genome structure. The RecA protein of Escherichia coli has a central role in homologous recombination, and a eukaryotic protein with similar properties has been discovered in the yeast Saccharomyces cerevisiae. Unexpectedly, this RecA-like protein has additional biochemical activities, and its function may not be restricted to recombination.  相似文献   

7.
M G Katze  M B Agy 《Enzyme》1990,44(1-4):332-346
The following reviews the role of mRNA stability in the regulation of both viral and cellular gene expression in virus-infected cells. Indeed, several eukaryotic viruses, including the human immunodeficiency virus, HIV-1, regulate cellular protein synthesis via such control mechanisms. The following systems will be discussed: (i) the degradation of viral and cellular mRNAs in cells infected by herpes simplex virus (HSV) and advances made using the HSV virion host shutoff mutant; (ii) the degradation of viral and cellular mRNA and ribosomal RNA in cells infected by vaccinia virus and the possible role of the oligoadenylate synthetase-RNase L pathways; (iii) the turnover of RNAs in cells infected by encephalomyocarditis virus, reovirus, and La Crosse virus; and finally (iv) recent studies from our laboratory on the degradation of cellular mRNAs in cells infected by HIV-1.  相似文献   

8.
9.
Computational modeling of eukaryotic mRNA turnover   总被引:8,自引:2,他引:6       下载免费PDF全文
Cao D  Parker R 《RNA (New York, N.Y.)》2001,7(9):1192-1212
  相似文献   

10.
11.
Mediator complexes and eukaryotic transcription regulation: an overview   总被引:1,自引:0,他引:1  
Casamassimi A  Napoli C 《Biochimie》2007,89(12):1439-1446
  相似文献   

12.
13.
DNA polymerase beta is one of the smallest known eukaryotic DNA polymerases. This polymerase has been very well characterized in vitro, but its functional role in vivo has yet to be determined. Using a novel competition assay in Escherichia coli, we isolated two DNA polymerase beta dominant negative mutants. When we overexpressed the dominant negative mutant proteins in Saccharomyces cerevisiae, the cells became sensitive to methyl methanesulfonate. Interestingly, overexpression of the same polymerase beta mutant proteins did not confer sensitivity to UV damage, strongly suggesting that the mutant proteins interfere with the process of base excision repair but not nucleotide excision repair in S. cerevisiae. Our data implicate a role for polymerase IV, the S. cerevisiae polymerase beta homolog, in base excision repair in S. cerevisiae.  相似文献   

14.
This study determined that the bacterial luciferase fusion gene (luxAB) was not a suitable in vivo gene reporter in the model eukaryotic organisms Saccharomyces cerevisiae and Caenorhabditis elegans. LuxAB expressing S. cerevisiae strains displayed distinctive rapid decays in luminescence upon addition of the bacterial luciferase substrate, n-decyl aldehyde, suggesting a toxic response. Growth studies and toxicity bioassays have subsequently confirmed, that the aldehyde substrate was toxic to both organisms at concentrations well tolerated by Escherichia coli. As the addition of aldehyde is an integral part of the bacterial luciferase activity assay, our results do not support the use of lux reporter genes for in vivo analyses in these model eukaryotic organisms.  相似文献   

15.
成熟mRNA的合成是一个复杂的过程,往往会产生错误.原核和真核细胞都在多水平进化出了mRNA监视机制,以保证mRNA的质量,甚至在翻译起始之后.真核生物胞质中有4种翻译依赖性的mRNA质量监视机制:无意义介导的降解、No-go降解、Non-stop降解和核糖体延伸介导的降解.这些机制不仅可以识别并迅速降解有缺陷的mRNA,控制mRNA质量,还都在调节基因表达方面具有重要作用,而且也与一些遗传病有关.本文主要综述了真核生物4种mRNA质量监视机制的研究进展,并对相关研究的应用前景做了展望.  相似文献   

16.
The pathway of mRNA degradation has been extensively studied in the yeast, Saccharomyces cerevisiae, and it is now clear that many mRNAs decay by a deadenylation-dependent mechanism. Although several of the factors required for mRNA decay have been identified, the regulation and precise roles of many of the proteins involved remains unclear. We have developed an in vitro system that recapitulates both the deadenylation and the decapping steps of mRNA decay. Furthermore, both deadenylation and decapping are inhibited by poly(A) binding proteins in our assay. Our system has allowed us to separate the decay process from translation and we have shown that the poly(A) tail is capable of inhibiting decapping in an eIF4E-independent manner. Our in vitro system should prove invaluable in dissecting the mechanisms of mRNA turnover.  相似文献   

17.
18.
Many mRNAs in mammalian cells decay via a sequential pathway involving rapid conversion of polyadenylated molecules to a poly(A)-deficient state followed by rapid degradation of the poly(A)-deficient molecules. However, the rapidity of this latter step(s) has precluded further analyses of the decay pathways involved. Decay intermediates derived from degradation of poly(A)-deficient molecules could offer clues regarding decay pathways, but these intermediates have not been readily detected. Cell-free mRNA decay systems have proven useful in analyses of decay pathways because decay intermediates are rather stable in vitro. Cell-free systems indicate that many mRNAs decay by a sequential 3'-5' pathway because 3'-terminal decay intermediates form following deadenylation. However, if 3'-terminal, in vitro decay intermediates reflect a biologically significant aspect of mRNA turnover, then similar intermediates should be present in cells. Here, I have compared the in vivo and in vitro decay of mRNA encoded by the c-myc proto-oncogene. Its decay both in vivo and in vitro occurs by rapid removal of the poly(A) tract and generation of a 3'-terminal decay intermediate. These data strongly suggest that a 3'-5' pathway contributes to turnover of c-myc mRNA in cells. It is likely that 3'-5' decay represents a major turnover pathway in mammalian cells.  相似文献   

19.
20.
The role of the yeast vacuole, a functional analogue of the mammalian lysosome, in the turnover of proteins and organelles has been well documented. This review provides an overview of the current knowledge of vesicle mediated vacuolar transport in the yeast Saccharomyces cerevisiae cells. Due to the conservation of the molecular transport machinery S. cerevisiae has become an important model system of vacuolar trafficking because of the facile application of genetics, molecular biology and biochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号