首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rats were injected intracerebroventricularly (i.c.v.) or i.v. with [14C]homocarnosine (250 nmol). Distribution of the dipeptide in brain structures, transport from the brain to the blood, distribution in peripheral organs, and excretion in the urine were studied by measuring radioactivity in tissue, plasma, and urine samples by liquid scintillation counting 15–120 min after injection. After i.c.v. injection, [14C]homocarnosine was taken up into all parts of the brain investigated (highest uptake in structures close to the site of injection), it was transported to the blood, and radioactive substances were found in low concentration in muscle, spleen, and liver, in high concentration in the kidneys, and very high concentration in the urine. Investigations using high pressure liquid chromatography (HPLC) showed that no degradation took place in the brain, all radioactivity was found in the homocarnosine fraction. In the plasma 86% of the radioactivity was found in the GABA fraction presumed to be formed by cleavage of the peptide, while in the kidneys 35% and in the urine 40% was found in the GABA fraction. After i.v. injection of [14C]homocarnosine, no radioactivity was measured in hippocampus, striatum, cerebellum and cerebral cortex 15 min after injection, however, 60 min after injection a very low activity was detected in these structures (estimated intravascular radioactivity subtracted). A low activity was also measured in the spinal cord both 15 and 60 min after injection. When homocarnosine and GABA were separated on HPLC, all radioactivity in brain tissue was found in the GABA fraction, indicating either that [14C]homocarnosine did not cross the blood-brain barrier in amounts that could be measured with the method used, or that peptide entering the brain was rapidly transported back to the blood. [14C]Homocarnosine was not taken up either into crude synaptosomal preparations from hippocampus, striatum, cerebellum, cortex and spinal cord, or into slices prepared from the hippocampus and striatum. Transport from the brain to the kidneys and excretion in the urine seems to be a major route for disposal of this peptide in the rat.  相似文献   

2.
Summary The mouse gallbladder epithelium was studied with light microscopic autoradiography and quantitative electron microscopy during fasting, refeeding and experimental gallstone formation. To determine the intracellular pathway of glycoproteins, H3-galactose was injected at different time intervals into the mice. At 10, 25 and 40 min after an intraperitoneal injection the gallbladders were fixed and prepared for light microscopy. As early as 10 min after injection, label was observed in supranuclear cytoplasmic regions and at 25 min, an increased radioactivity was present throughout the apical cytoplasm. At 40 min, silver grains were mainly present at the cell surface. Autoradiographs processed 25 min after an intraperitoneal H3-galactose injection after fasting for 48 h showed decreased supranuclear and apical radioactivity. After refeeding (12 h) there was an enhanced activity in both these regions. Animals fed a lithogenic diet for one month showed a marked increase of radioactive label mainly in cells of crypts and invaginations of the mouse gallbladder mucosa.Morphometric measurements of the Golgi apparatus revealed that deprivation of food significantly diminished the volume density of the Golgi apparatus. Refeeding the animals restored the volume density values to normal levels. In the course of gallstone formation there was a further significant increase in the volume density of the Golgi complexes as compared to controls.  相似文献   

3.
Summary 14C-uridine or 14C-orotic acid was injected into the third or fourth brain ventricle of adult rats. The rate of incorporation of these precursors into the RNA of various brain regions was studied by autoradiography. 0.5 hour, 1 hour, 2 hours and 4 hours after the injection of labelled uridine and/or orotic acid into the third ventricle, a very uneven labelling of different brain regions was observed. The highest grain density was found over the ventricular walls and in the closely adjacent brain tissue; the intensity of labelling decreased sharply with distance from the ventricular lumen. 24 hours after intraventricular injection, a medio-lateral gradient of grain density was no longer observed. An intense labelling of leptomeninx (especially at the base of the brain) and of ependymal cells was observed at all time intervals investigated. At time intervals 0.5–2 hours the grain density of these structures surpassed by a considerable amount the grain density over neurons, glial cells or neuropile.Two hours after the injection of 14C-orotic acid into the fourth ventricle, the grains were mainly localised over leptomeningeal cells and vessels at the base of the brain and in the adjacent narrow strip of brain tissue. The rest of the brain was only very faintly labelled.  相似文献   

4.
《Life sciences》1994,55(20):PL403-PL407
The potent and selective 5-HT1A antagonist WAY 100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide) was radiolabeled with 11C in high specific activity, and the in vivo properties of this radioligand were assessed in the brains of rats and monkeys. Following i.v. tail vein injection in rats, [11C]WAY 100635 rapidly penetrated into brain tissue and was retained over a 30–90 min time period in a manner consistent with the known distribution of 5-HT1A receptors. Pretreatment of rats with the selective 5-HT1A agonist (±)-8-OH-DPAT effectively blocked the retention of radioactivity in brain regions known to contain high densities of 5-HT1A receptors. The hippocampus-to-cerebellum radioactivity concentration ratio reached a maximum of 16:1 at 60 min post injection. Following i.v. injection of [11C]WAY 100635 in rhesus monkeys, the concentrations of radioactivity in brain regions were consistent with the reported distribution of 5-HT1A receptors in primates, and the frontal cortex-to-cerebellum ratio reached 5.5:1 at 80 min post injection. Pretreatment of the monkeys with (±)-8-OH-DPAT reduced this ratio to 1.4:1, and injection of (±)-8-OH-DPAT 20 min after the injection of [11C]WAY 100635 significantly displaced frontal cortex binding. The in vivo properties of [11C]WAY 100635 in rats and monkeys strongly support the future utility of this radioligand for imaging 5-HT1A receptors using positron emission tomography (PET).  相似文献   

5.
Following the intravenous injection of nanomolar amounts of [3H]dolichol into rats, the radioactivity rapidly appeared in the high-density lipoprotein fraction of the plasma and circulated with a half-life of about 9 h. A fraction of the injected activity was excreted in the feces, presumably through the bile, but evidence was obtained that little oxidative breakdown of dolichol occurred. All tissues assayed acquired radioactivity, but the liver attained the highest specific activity and the largest percentage of the total radioactive dolichol. Subcellular fractionation of the liver revealed that mitochondrial preparations contained the bulk of the labeled dolichol at all times tested up to 40 h after injection. Disruption of the mitochondrial structure by two different techniques permitted the isolation of inner and outer membrane fractions and it was found that the [3H]dolichol was concentrated in the outer membrane fraction. The significance of these findings is discussed.  相似文献   

6.
Abstract— The half-life of free [14C]palmitic acid injected intracerebrally into C57BL/10J mice was less than 5 min. The rapid disappearance of radioactivity as palmitic acid was accompanied by increases in the radioactivity of the phosphatidic acids and the diacyl-glycerols. The peak specific radioactivity of the diacylglycerols occurred at about 6-8 min after injection. The triacylglycerols, phosphatidyl ethanolamines and phosphatidyl cholines exhibited increasing amounts of radioactivity during the first 40 min. At 160 min after injection, the distribution of radioactivity was similar to the pattern observed at 12 h. The biosynthetic pathway through the phosphatidic acids and the diacylglycerols to triacylglycerols, phosphatidyl ethanolamines and phosphatidyl cholines is apparently the major pathway in vivo for the esterification of free fatty acids in the brain.  相似文献   

7.
[11C]Cyanoimipramine has been prepared by methylation of the desmethyl cyanoimipramine with [11C]methyl iodide. The chemically and radiochemically pure labelled product was obtained with a high specific activity (> 300 mCi/μmol). When 11C (or 3H)-cyanoimipramine was intravenously administered in mice, high accumulations were shown in brain and lung. Thirty minutes after injection of the tracer, differences were found in the radioactivity between the cerebral cortex and the cerebellum. The regional distribution of radioactivity in the rat brain 30 min after i.v. injection of [11C]cyanoimipramine was also examined, and the radioactivity was high in receptor rich areas (striatum, cerebral cortex etc.) but low in receptor poor area (cerebellum). The in vivo stability of [3H]cyanoimipramine was quite stable in the mouse brain for at least 30 min. Thirty minutes after injection, the radioactivity in the cerebral cortex of the carrier-added state was reduced as compared with the carrier-free state. Taken together, the in vivo specific binding of [3H]cyanoimipramine in the cerebral cortex was estimated at about 40–50% of the total radioactivity. Furthermore, the distribution of [3H]cyanoimipramine in the mice forced to swim was examined. Significant changes in the distribution of [3H]cyanoimipramine were observed in the cerebral cortex.  相似文献   

8.
The intracellular fate of radiolabeled T3 taken up by mice hepatocytes in vivo was determined at specific time intervals (2–120 min) after injection by quantitative electron microscopic radioautography. Injection of a 200-fold excess of unlabeled T3 together with [125I]-T3 resulted in a more than 90% inhibition of radioactivity detected in hepatocytes. A simple grain density (GD) analysis of radioautograms revealed that a specific labeling (GD > 1) was displayed by only five cell compartments: the plasma membrane, lipid droplets, mitochondria, nuclear envelope and nuclear matrix whereas other compartments were not labeled. Labeled compartments showed distinct changes in the pattern of labeling over time: the plasma membrane was labeled only 2 min after T3 injection, whereas labeling of the nuclear envelope was high at 2 min, decreased at 15 min and progressively increased to maximal measured levels at 120 min. After a lag time of 30 min, nuclear matrix labeling increased progressively with time. Mitochondrial labeling was found to be specific at any time point studied but showed no change over time. These ultrastructural data have been confirmed in vitro by the interaction of T3 with plasma membrane, nuclear membrane, nuclear matrix and mitochondria by real-time biospecific interaction analysis in a BIAcore system. These results demonstrate that T3 binds to hepatocytes before internalization, is transported both to mitochondria and to the nuclear envelope and translocated into the nuclear matrix.  相似文献   

9.
Summary In the serum of rats with liver cirrhosis induced by 12-week intermittent carbon tetrachloride (CCl4) injection, free L-tryptophan (Trp) levels increased with decreases in total Trp, albumin-bound Trp, and albumin levels. In the serum of the cirrhotic rats, there were no changes in the ratio of albumin-bound Trp to albumin and the level of free fatty acids which are known to weaken the binding of Trp to albumin. In the liver of the cirrhotic rats, there were increases in protein and free Trp (i.e., non-protein Trp) contents and a decrease in total tryptophan 2,3-dioxygenase (TDO) activity. The decreased TDO activity was mainly due to the reduction of apo-TDO activity. When [3H]Trp was injected into the portal vein of the cirrhotic and control rats, radioactivity derived from the injected [3H]Trp in the liver was higher in the cirrhotic rats than in the control rats at 10min after the injection, while the radioactivity in the serum was lower in the former rats than in the latter rats. These results indicate that the increased Trp is easily taken up into the cirrhotic liver, and suggest that the Trp taken up into the cirrhotic liver could be utilized for the maintenance of synthesis of proteins in the tissue through the reduction of Trp metabolism due to reduced TDO activity in the tissue.  相似文献   

10.
The incorporation of H3-tyrosine into the protein of the cells in the cortex of rat hair has been investigated by radioautography. In growing hairs, radioactivity is found in the matrix, the upper bulb, and the whole of the keratogenous zone up to the fully keratinized part of the shaft, 10 and 30 minutes after an injection of labelled tyrosine. This is unequivocal evidence of protein synthesis at these sites. There is a very precise relationship between the end of protein synthesis and the hardening of the cortical cells at the top of the keratogenous zone. The way in which the silver grains of the radioautographs are clustered indicates that at 30 minutes after the injection the isotope is distributed more evenly in the matrix and upper bulb than in the top of the keratogenous zone. Possibly this reflects a difference, at these sites, in the cell components engaged in protein synthesis, or in the proteins being synthesized. The fully keratinized and hardened part of the hair was not radioactive at 10 and 30 minutes after the injection of H3-tyrosine. The rate at which the radioactivity moves into this region shows that the hair of rats grows 0.9 mm/24 hours. Comparison of the degree of radioactivity along the growing hair in the 30-minute, 12-hour, and 36-hour materials shows conclusively that protein accumulates in the cortical cells during their keratinization. An injection of a labelled amino acid does not behave as an ideal pulse dose; consequently, the grain density over the hair cortex at 36 hours is 100 per cent larger than would be expected if an ideal pulse dose situation existed.  相似文献   

11.
Summary Wistar rats were injected intraperitoneally with 2-(14C)deoxyglucose and their thymuses were processed for thaw-mount autoradiography after 5, 10 or 35 min. Highest levels of radioactivity were demonstrated in the thymic medulla (5-fold higher than in the cortex). Scanning of autoradiograms for regional differences in grain densities indicated particularly intense glucose utilization in the cortico-medullary zone. Differences in glucose utilization between individual thymic zones seem to reflect differences in cellular composition, i. e., ratio of stroma cells to thymocytes.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

12.
Groups of spayed guinea pigs were injected sc with tritiated estradiol benzoate in oil and killed at intervals varying from 12 to 120 hr later. The quantities of radioactivity with the mobility of estrone (E1), estradiol-17β (E2), and estriol (E3) were estimated in plasma, hypothalamus, cortex, and cerebellum. Radiometabolites extracted from the hypothalamus and the cortex were identified by derivative formation and by isotope dilution techniques. The hypothalamus contained larger quantities of E2 than any of the other tissues studied. The same pattern of uptake and decay of radioactivity was observed in all tissues. Concentration of total radioactivity was greatest 12 hr after injection and declined fairly regularly to minimal value at 120 hr. Unlike the hypothalamus and the cerebellum, in the cortex a large proportion of the radioactivity was present as E1. 3H-estradiol benzoate was metabolized to 3H-estradiol by blood in vitro suggesting that the esterified form of the hormone is long lasting because of its slow release from the site of injection rather than its long half-life in the blood.Additional groups of spayed guinea pigs were tested for lordosis in response to fingering after injection of estradiol benzoate followed by progesterone at intervals varying from 12 to 120 hr. The expression of lordosis varied in a complex manner as a function of the interval between the injection of estradiol benzoate and progesterone. Maximum measures of lordosis were obtained when the interval between injections was 36 hr. The relation between behavior and the neural uptake of estrogens suggests that both the duration of estrogen action and the concentration of estrogens at the time the behavior is being displayed determine the character of the response.  相似文献   

13.
Thirty sec after the intrajugular injection of [3H] methionine-enkephalin (met-enkephalin) in the rat, the radioactivity was already distributed in an apparent volume of 53 ml and the metabolic clearance rate calculated from the characteristics of the plasma disappearance curve was 10 ml/min. As shown by partition chromatography plasma extracts obtained 15 sec after injection of [3H] met-enkephalin, only 5% of the total radioactivity migrated as the intact pentapeptide, while no detectable intact pentapeptide remained 2 min after injection, thus indicating a half-life of [3H] met-enkephalin of the order of 2 to 4 sec. Incubation of rat cerebral tissue with [3H] met-enkephalin indicates that the first step in the breakdown of met-enkephalin in both plasma and brain tissue is cleavage of the Tyr-Gly amide bond. These data offer an explanation for the low activity of met-enkephalin after intraventricular or intravenous administration.  相似文献   

14.
A time-sequence study of the incorporation and distribution of cholesterol in peripheral nerve myelin was carried out by electron microscope autoradiography. [1,2-3H]Cholesterol was injected into 10-day old mice and the sciatic nerves were dissected out at 10, 20, 40, 60, 90, 120, and 180 min after the injection. 20 min after injection the higher densities of grains due to the presence of [3H]cholesterol were confined to the outer and inner edges of the myelin sheath. Practically no cholesterol was detected in the midzone of the myelin sheath. 1 ½ h after injection, cholesterol showed a wider distribution within the myelin sheath, the higher densities of grains occurring over the two peripheral myelin bands, each approximately 3,100 Å wide. Cholesterol was also present in the center of the myelin sheath but to a considerably lesser extent. 3 h after injection cholesterol appeared homogeneously distributed within the myelin sheath. Schwann cell and axon compartments were also labeled at each time interval studied beginning 20 min postinjection. These observations indicate that preformed cholesterol enters myelin first and almost simultaneously through the inner and outer edges of the sheath; only after 90 min does the density of labeled cholesterol in the central zone of myelin reach the same density as that in the outer and inner zones. These findings suggest that cholesterol used by the nerve fibers in the formation and maintenance of the myelin sheath enters the lamellae from the Schwann cell cytoplasm and from the axon. The possibility of a bidirectional movement of molecules, i.e. from the Schwann cell to the axon and from the axon to the Schwann cell through the myelin sheath, is noted. The results are discussed in the light of recent observations on the exchange, reutilization, and transaxonal movement of cholesterol.  相似文献   

15.
125I-labelled pregnancy zone protein complex was injected intravenously in rats and after 6 min uptake into cells of the liver and spleen was determined by electron microscopic autoradiography. The liver took up 68% of the injected radioactivity; 61% was in the hepatocytes and 7% was in the liver macrophages (Kupffer cells). The spleen took up 3–4% and nearly all the radioactivity was in the macrophages of the red pulp. The uptake per cell volume was several times higher in the macrophage than in the hepatocyte. The radioactivity associated with macrophages was largely in endocytotic vacuoles and lysosomes. Binding of labelled pregnancy zone protein complex to peritoneal macrophages at 4°C was 2–3-times higher than binding of the homologous α2-macroglobulin complex. The two ligands competed for binding to the same receptors and the difference was due to a higher affinity of the pregnancy zone protein complex (Kd approx. 60 pM). After binding to the receptor, this ligand was internalised within 2–3 min at 37°C and radioactivity inside the cells largely represented intact pregnancy zone protein complex. Radioactivity was released from the cell as iodotyrosine after a lag time of about 10 min. It is concluded that pregnancy zone protein complex is bound with a high affinity to the α2-macroglobulin receptors in rat macrophages followed by receptor-mediated endocytosis and degradation of the ligand in the lysosomes.  相似文献   

16.
Time course studies revealed that at 30 s after intraportal injection of 200 μU of 125I-labeled insulin per 100 g rat 47.9 ± 2.8% of the injected radioactivity was recovered from the liver homogenate by precipitation with trichloroacetic acid. Trichloroacetic acid precipitable radioactivity declined to very low levels during the next 30 min whereas trichloroacetic acid soluble radioactivity reached a peak value of 9.56 ± 1.9% at 5 min and declined gradually thereafter. At 30 s mean peak accumulations ±SE of 6.83 ± 0.42, 5.06 ± 0.27, 14.90 ± 1.85, and 3.58 ± 0.58% of injected radioactivity were recovered in trichloroacetic acid precipitates from the 700g (nuclei + debris), 10,000g (mitochondria + lysosome), 105,000g (microsomes), and supernatant (cytosol) subfractions, respectively. Mean peak values of 0.72 ± 0.08, 0.12 ± 0.02, and 1.11 ± 0.16% of injected radioactivity were recovered in the partially purified mitochondrial fraction, purified nuclei, and plasma membranes, respectively, as trichloroacetic acid precipitable material. Most of the trichloroacetic acid precipitable activities in the subfractions were immunoprecipitable. Trichloroacetic acid soluble radioactivity was found mainly in the cytosol and microsomal fractions. Peak specific activity (percentage of injected dose/mg protein × 10?3) was highest in the microsomes, intermediate in the plasma membranes, and very low in the purified nuclei and partially purified mitochondrial fraction. The specific activity of the microsomes remained at or near peak levels for 5 min after 125I-labeled insulin injection and then declined, whereas specific activity of the plasma membranes dropped precipitously to 25% of peak values at 5 min. Sephadex gel filtration of the radioactivity in the deoxycholate soluble fraction of microsomes at 5 min after 125I-labeled insulin injection resulted in the elution of a major peak (Peak I) in the region of 125I-labeled insulin and a minor peak (Peak II) in the region of the labeled A and B chains. Incubation of the fraction for 30 min at 37 °C with 3 mm reduced glutathione and 15 mm EDTA resulted in a reciprocal fall in Peak I and rise in Peak II. The data suggest that intraportally injected 125I-labeled insulin is rapidly internalized and concentrated in the rat liver microsomes. The time courses of appearance and disappearance of trichloroacetic acid precipitable radioactivity in plasma membrane and microsomes further suggest, although do not prove, that insulin binds to plasma membranes before it is internalized. They also provide presumptive evidence suggesting that the sequential degradative pathway is operative in vivo.  相似文献   

17.
It is not known whether ouabain injected into the kidney in vivo is bound exclusively to the (Na+ + K+)-ATPase and whether the reduction of sodium pumping capacity is large enough to account for the reduction in sodium reabsorption. In the present study on dogs the total amount of parenchymal ouabain was therefore estimated and the specific renal binding compared to the reduction in (Na+ + K+)-ATPase activity. Ouabain, 120 nmol/kg body weight, was injected into the renal artery in vivo reducing the (Na+ + K+)-ATPase activity by 3lmost 80%. After nephrectomy, tissue ouabain could be quantified by radioimmunoassay after heating the homogenate to 70°C for 30 min; negligible amounts were detectable without heating. No correlation between ouabain binding and tissue volume, protein content, DNA content or Mg2+-ATPase content could be found when comparing the following four fractions of the kidney: outer cortex, inner cortex, outer medulla and papilla. For the whole kidney, mean parenchymal tissue concentration of ouabain equalled 0.58 ± 0.03 μmol/100 g wet tissue. Only 21.3 ± 1.2% of the ouabain was confined to the outer medulla corresponding to 54 ± 4 nmol giving a tissue concentration of 1.08 ± 0.05 μmol/100 g wet tissue. The renal ouabain concentrations were highly correlated to the reduction in (Na+ + K+)-ATPase activity, giving a ratio between the reduction in hydrolysis rate and bound ouabain (turnover number) of 6105 min?1 which is close to the value of 7180 min?1 found by in vitro Scatchard analysis. No ouabain seems to be bound to other tissue components than the (Na+ + K+)-ATPase and the present method is therefore a simple way of measuring the number of inhibited (Na+ + K+)-ATPase molecules after in vivo injection of ouabain.  相似文献   

18.
To obtain evidence of the site of conversion of [U-14C]glucose into glutamate and related amino acids of the brain, a mixture of [U-14C]glucose and [3H]glutamate was injected subcutaneously into rats. [3H]Glutamate gave rise to several 3H-labelled amino acids in rat liver and blood; only 3H-labelled glutamate, glutamine or γ-aminobutyrate were found in the brain. The specific radioactivity of [3H]glutamine in the brain was higher than that of [3H]glutamate indicating the entry of [3H]glutamate mainly in the ‘small glutamate compartment’. The 14C-labelling pattern of amino acids in the brain and liver after injection of [U-14C]glucose was similar to that previously reported (Gaitonde et al., 1965). The specific radioactivity of [14C]glutamine in the blood and liver after injection of both precursors was greater than that of glutamate between 10 and 60 min after the injection of the precursors. The extent of labelling of alanine and aspartate was greater than that of other amino acids in the blood after injection of [U-14C]glucose. There was no labelling of brain protein with [3H]glutamate during the 10 min period, but significant label was found at 30 and 60 min. The highest relative incorporation of [14C]glutamate and [14C]aspartate in rat brain protein was observed at 5 min after the injection of [U-14C]glucose. The results have been discussed in the context of transport of glutamine synthesized in the brain and the site of metabolism of [U-14C]glucose in the brain.  相似文献   

19.
The freshwater painted turtle, Chrysemys picta, was used to investigate (a) the distribution of an injected dose of 109Cd in tissues over a period of 192 h (8 days) and (b) the effect of non-isotopic cadmium injection on tissue metal-binding protein levels. Cadmium is cleared from the blood with 9% remaining in the circulation at 192 h. 109Cd is found in all tissues, but is accumulated preferentially in liver, kidney, pancreas, and gastrointestinal tract. The liver is the primary site of Cd accumulation, accounting for 46.4% of the injected dose by 192 h and the highest Cd concentration (cpm/mg tissue). Steroidogenic tissues and the oviduct accumulate significant amounts of 109Cd and the isotope is present in yolk. An increase in tissue metal-binding protein level after non-isotopic CdCl2 injection is consistent with 109Cd distribution, in that metal-binding protein concentration after CdCl2 injection is highest in liver, followed by pancreas and kidney with low, but with significant levels of cadmium-binding protein in gonads and steroid target organs. We conclude that the liver is the major site of storage after a single injection of isotopic cadmium and induction of a metal-binding protein may be an adaptive response to exposure to cadmium.  相似文献   

20.
—Cell nuclei were isolated from four regions of the brains of ovariectomized female rats 2 hr after the injection of [3H]oestradiol. By light microscopy, the nuclear pellets contained highly purified nuclei of neuronal and glial cells with little cytoplasmic contamination. Tritium was concentrated in cell nuclei from the preoptic-hypothalamic area, to a lesser extent in nuclei from the amygdaloid region and hippocampus, and least of all in cerebral cortical nuclei. In comparison with whole homogenates (= 1-0), the nuclear concentrations of radioactivity were 12·9, 4·7, 1·9 and 0·8, respectively. Approximately 40 per cent of the radioactivity in homogenates of the preoptic-hypothalamic area was present in cell nuclei, and upon TLC more than 85 per cent of the radioactive material in the nuclei exhibited the RF of oestradiol-17β. Pretreatment of ovariectomized females with 1 mg of unlabelled oestradiol 30 min before the injection of labelled hormone abolished the nuclear uptake of [3H]oestradiol in all four regions of the brain. A concurrent injection of 10 μg of unlabelled oestradiol-17β significantly reduced nuclear uptake, while a similar injection of testosterone or oestradiol-17α had no significant effect. One mg of oestradiol-17α, but not testosterone, did reduce nuclear uptake. The retention of [3H]oestradiol by the preoptic-hypothalamic area decreased exponentially in the tissue from 30 min to 4 h after an intraperitoneal injection; however, nuclear binding reached a peak at 1-2 h and still showed high retention at 4 h. These results, together with observations in other laboratories of morphological changes induced by oestrogens, establish that certain regions of the brain are bona fide targets for the action of oestradiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号