首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND AIMS: Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). METHODS: Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). RESULTS: Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. CONCLUSION: Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.  相似文献   

2.
From an analytical model it was shown that for a given total amount of nitrogen in the canopy, there exists an optimal leaf area index (LAI), and therefore an optimal average leaf introgen content, at which canopy photosynthesis is maximal. If the LAI is increased above this optimum, increased light interception will not compensate for reduction in photosynthetic capacity of the canopy resulting from reduced leaf nitrogen contents. It was further derived from the model that the value of the optimal LAI increases with the photosynthetic nitrogen use efficiency (PNUE) and decreases with the canopy extinction coefficient for light (KL) and incident photon flux density (PFD) at the top of the canopy. These hypotheses were tested on dense stands of species with different photosynthetic modes and different architectures. A garden experiment was carried out with the C4 monocot sorghum ( Sorghum bicolor [L.] Moensch cv. Pioneer), the C3 monocot rice ( Oryza sativa L. cv. Araure 4), the C4 dicot amaranth ( Amaranthus cruentus L. cv. K113) and the C3 dicot soybean ( Glycine max [L.] Merr. cv. Williams) at two levels of nitrogen availability.
The C4 species had higher PNUEs than the C3 species while the dicots formed stands with higher extinction coefficients for light and had lower PNUEs than the monocots. The C4 and monocot species were found to have formed more leaf area per unit leaf nitrogen (i.e., had lower leaf nitrogen contents) than the C3 and dicot species, respectively. These results indicate that the PNUE and the extinction coefficient for light are important factors determining the amount of leaf area produced per unit nitrogen as was predicted by the model.  相似文献   

3.
Leaf area index (LAI) was developed to describe the number of layers of foliage in a monoculture. Subsequent expansion into measurement by remote‐sensing methods has resulted in misrepresentation of LAI. The new name foliage layer index (FLI) is applied to a more simply estimated version of Goodall's “cover repetition,” that is, the number of layers of foliage a single species has, either within a community or in monoculture. The relationship of FLI with cover is demonstrated in model communities, and some potential relationships between FLI and species’ habit are suggested. FLIcomm is a new formulation for the number of layers of foliage in a mixed‐species’ community. LAI should now be reserved for remote‐sensing applications in mixed communities, where it is probably a nonlinear measure of the density of light‐absorbing pigments.  相似文献   

4.
ABSTRACT

Drought responses, leaf area index (LAI), leaf characteristics and light extinction coefficient (k) were analysed in thinned and unthinned Turkey oak (Quercus cerris L.) stands at two sites: Valsavignone, in the Apennines, with a mild climate, and Caselli, near the Tyrrhenian coast, with a longer and more accentuated dry period in the summer. Turkey oak showed a good adaptability to drought due to a series of modifications in leaf characteristics, canopy properties and biomass allocation such as leaf area reduction, increased leaf thickness, smaller number of leaves and, at stand level, lower LAI, leaf biomass and LWR values and higher light extinction coefficients. In spite of the better environmental conditions and the higher LAI values, productivity was lower in the wet site. The differences in Turkey oak canopy properties, light extinction coefficients, LAI and their relations with drought and productivity are discussed.  相似文献   

5.
A beam-emission experiment using a Monte Carlo technqiue was attempted in a computer model for the random distribution (RD) of foliage. The RD foliage consisted of 500 leaves of the same size, their individual areas being just 1/100 of the unit land area; i.e., a leaf area index (LAI) of RD foliage was equal to 5. Satisfactory agreement of light transmission under a uniform overcast sky was obtained between the observed values in the RD foliage and theoretical anticipations for any leaf inclination angle and/or leaf area density. This result demonstrated the usefulness of the Monte Carlo technique adopted in this experiment. The Monte Carlo experiment was also applied to a patch-like population. For such a foliage, additional effect of lateral incidence were worth noting in contrast with the microclimates in the corresponding infinite foliage. For every leaf inclination angle the mean light flux density below the middle stratum within a patch-like population was not further attenuate with increasing LAI.  相似文献   

6.
Summary The structural characteristics of a diverse array of Quercus coccifera canopies were assessed and related to measured and computed light attenuation, proportion of sunlit foliage, foliage temperatures, and photosynthesis and diffusive conductance behavior in different canopy layers. A canopy model incorporating all components of shortwave and longwave radiation, and the energy balance, conductance, and CO2 and H2O exchanges of all leaf layers was developed and compared with measurements of microclimate and gas exchange in canopies in four seasons of the year. In the denser canopies with a leaf area index (LAI) greater than 5, there is little sunlit foliage and the diffuse radiation (400–700 nm) is attenuated to 5% or less of the global radiation (400–700 nm) incident on the top of the canopy. Foliage of this species is nonrandomly distributed with respect to azimuth angle, and within each canopy layer, foliage azimuth and inclination angles are correlated. A detailed version of the model which computed radiation interception and photosynthetic light harvesting according to these nonrandom distributions indicated little difference in whole-canopy gas exchange from calculations of the normal model, which assumes random azimuth orientation. The contributions of different leaf layers to canopy gas exchange are not only a function of the canopy microclimate, but also the degree to which leaves in the lower layers of the canopy exhibit more shade-leaf characteristics, such as low photosynthetic and respiratory capacity and maximal conductance. On cloudless days, the majority of the foliage in a canopy of 5.4 LAI is shaded —70%–90% depending on the time of year. Yet, the shaded foliage under these conditions is calculated to contribute only about one-third of the canopy carbon gain. This contribution is about the same as that of the upper 13% of the canopy foliage. Computed annual whole-canopy carbon gain and water use are, respectively, 60% and 100% greater for a canopy of 5 LAI than for one of 2 LAI. Canopy water-use efficiency is correspondingly less for the canopy of 5 LAI than for that of 2 LAI, but most of this difference is apparent during the cool months of the year, when moisture is more abundant.  相似文献   

7.
A microcomputer model for forest carbon dynamics with five functional comparments (atmosphere, foliage, woody-parts, roots and dead biomass in the soil) is constructed which incorporates dry-matter production processes of trees such as photosynthesis, respiration and allocation of photosynthate. The effect of photosynthesis rate at saturated light and dark respiration rate of a single leaf upon surplus production (P s) is three-dimensionally illustrated as a function of cumulative leaf area index (LAI) and extinction coefficient of light. Probable values of the physiological parameters in this model are determined by repeated simulation experiments. The successional pattern during a period of 100 years is simulated, demonstrating stable and perpetual occurrence of a tropical rainforest ecosystem composed of three strata. The model is also analyzed in terms of response of relative initial density of trees, thereby displaying the law of constant final yield in a forest ecosystem. The model outputs of carbon fluxes and phytomasses at the steady state agree quite well with field data already obtained from a tropical rainforest at Pasoh.  相似文献   

8.
Leaf area index (LAI) is a key driver of forest productivity and evapotranspiration; however, it is a difficult and labor-intensive variable to measure, making its measurement impractical for large-scale and long-term studies of tropical forest structure and function. In contrast, satellite estimates of LAI have shown promise for large-scale and long-term studies, but their performance has been equivocal and the biases are not well known. We measured total, overstory, and understory LAI of an Amazon-savanna transitional forest (ASTF) over 3 years and a seasonal flooded forest (SFF) during 4 years using a light extinction method and two remote sensing methods (LAI MODIS product and the Landsat-METRIC method), with the objectives of (1) evaluating the performance of the remote sensing methods, and (2) understanding how total, overstory and understory LAI interact with micrometeorological variables. Total, overstory and understory LAI differed between both sites, with ASTF having higher LAI values than SFF, but neither site exhibited year-to-year variation in LAI despite large differences in meteorological variables. LAI values at the two sites have different patterns of correlation with micrometeorological variables. ASTF exhibited smaller seasonal variations in LAI than SFF. In contrast, SFF exhibited small changes in total LAI; however, dry season declines in overstory LAI were counteracted by understory increases in LAI. MODIS LAI correlated weakly to total LAI for SFF but not for ASTF, while METRIC LAI had no correlation to total LAI. However, MODIS LAI correlated strongly with overstory LAI for both sites, but had no correlation with understory LAI. Furthermore, LAI estimates based on canopy light extinction were correlated positively with seasonal variations in rainfall and soil water content and negatively with vapor pressure deficit and solar radiation; however, in some cases satellite-derived estimates of LAI exhibited no correlation with climate variables (METRIC LAI or MODIS LAI for ASTF). These data indicate that the satellite-derived estimates of LAI are insensitive to the understory variations in LAI that occur in many seasonal tropical forests and the micrometeorological variables that control seasonal variations in leaf phenology. While more ground-based measurements are needed to adequately quantify the performance of these satellite-based LAI products, our data indicate that their output must be interpreted with caution in seasonal tropical forests.  相似文献   

9.
Tree fall gaps are widely considered to play a prominent role in the maintenance of species diversity, while the spatiotemporal variability of canopy structure within closed forest stands is largely ignored. In this study we examined the vertical and horizontal components of canopy structure and its seasonal variability in a tropical wet semideciduous rainforest in Panama. Leaf area indices (LAI) were derived from measurements of diffuse radiation and empirically-based leaf angle distribution by mathematical inversion of a light interception model. Vertical distribution of LAI was non-homogeneous with 50% of the leaf area being concentrated in the uppermost 5 m of the canopy. In the wet season, when foliage is most abundant, the horizontal distribution of LAI in a 2100 m2 plot ranged widely from 3 to 8, with a mean of 5.41. Changes in mean LAI between wet and dry seasons were small but highly significant. While ca 40% of the area was not affected by local changes in LAI, sizeable small scale changes in LAI did occur between wet and dry season in some locations. Local changes in LAI ranged from –2.3 to 2.4. These changes resulted in a 50% or more increase in light reaching the forest floor at 29% of the measuring locations, and a doubling or more at 13% of the location. Our results imply that structural heterogeneity by simple tree fall gaps do not adequately describe the dynamics of forest canopies.  相似文献   

10.
帽儿山地区森林冠层叶面积指数的地面观测与遥感反演   总被引:13,自引:0,他引:13  
Zhu GL  Ju WM  Jm C  Fan WY  Zhou YL  Li XF  Li MZ 《应用生态学报》2010,21(8):2117-2124
叶面积指数(leaf area index,LAI)是陆地生态系统最重要的结构参数之一,遥感和基于冠层孔隙率模型的光学仪器观测是快速获取LAI的有效方法,但由于植被叶片的聚集效应,这些方法通常只能获取有效叶面积指数(effective LAI,LAIe).本文以东北林业大学帽儿山实验林场为研究区,利用LAI2000观测森林冠层LAIe,并结合TRAC观测的叶片聚集度系数估算了森林冠层LAI,并通过分析基于Landsat5-TM数据计算的不同植被指数与LAIe之间的关系,建立了该区森林LAI遥感估算模型.结果表明:研究区阔叶林的LAI和LAIe基本相当,而针叶林的LAI比LAIe大27%;减化比值植被指数(reduced simple ratio,RSR)与该区LAIe的相关性最好(R2=0.763,n=23),最适合该区LAI的遥感提取.当海拔<400 m时,LAI随海拔高度的上升而快速增大;当海拔在400~750 m时,LAI随海拔高度的上升缓慢增大;当海拔>750 m时,LAI呈下降趋势.研究区森林冠层LAI与森林地上生物量存在显著的正相关关系.  相似文献   

11.
We compared direct and indirect estimates of leaf area index (LAI) for lodgepole and loblolly pine stands. Indirect estimates of LAI using radiative methods of the LI-COR LAI-2000 Plant Canopy Analyzer (PCA) did not correlate with allometric estimates for lodgepole pine, and correlated only weakly with litter-trap estimates for loblolly pine. The PCA consistently under-estimated LAI in lodgepole pine stands with high LAI, and over-estimated LAI in the loblolly pine stands with low LAI. We developed a physical model to test the hypothesis that the PCA may under-estimate LAI in high leaf area stands because of increased foliage overlap and, therefore, increased selfshading. Radiative estimates of LAI using the PCA for the physical model were consistenly lower than allometric measures. Results from the physical model suggested that increased foliage overlap decreased the ability of the PCA to accurately estimate LAI. The relationship between allometric and radiative measures suggested an upper asymptote in LAI estimated using the PCA. The PCA may not accurately estimate LAI in stands of low or high leaf area index, and the bias or error associated with these estimates probably depends on species and canopy structure. A species specific correction factor will not necessarily correct bias in LAI estimates using the PCA.  相似文献   

12.
Light distribution and foliage structure in an oak canopy   总被引:4,自引:0,他引:4  
 Leaf angle distribution and shoot bifurcation ratio were measured and related to photon flux density (PFD) distribution in an oak canopy. Leaf angle distribution deviated substantially from random and changed markedly throughout the canopy. The observed leaf angle distribution was described by an ellipsoidal function with the single parameter of the distribution, x, changing from 1.6 at the top of the canopy to 3.2 in the lowest branches. In vertically homogeneous canopies, the extinction coefficient for diffuse radiation is expected to decline with increasing leaf area index (LAI). However, in the canopy studied here, the leaf angle distribution changed with height such that the effective extinction coefficient remained constant. Both shoot bifurcation ratio and leaf number per shoot declined with decreasing PFD inside the canopy. Based on these observed relationships, a simple canopy growth model that assumes horizontal homogeneity of the canopy was constructed. Calculations showed that a steady state, when growth in the upper of the canopy is in equilibrium with decline of lower canopy, the total canopy LAI should equal to 4.3. This predicted value of equilibrium LAI is larger than that estimated from measurements of PFD transmission (LAI=3.3), but smaller than that directly determined by litter collection (LAI=6.2 in 1998). Possible reasons for these discrepancies are discussed. Received: 22 June 1998 / Accepted: 7 April 1999  相似文献   

13.
Based on inversion of gap fraction data (Poisson model of foliage distribution), three optical methods using the Demon, the Plant Canopy Analyzer LAI-2000 (PCA) and hemispherical photographs, have been compared to estimate canopy openness (CO) and leaf area index (LAI) in a mature, neutrophil, oak-beech-hornbeam forest on mull in eastern France. Mean CO over the whole hemisphere was similar for PCA (7.9%) and hemispherical photographs (8.0%). The needle method, a vertical point quadrat method, applied to the litter after leaf fall has served as a reference to LAI (4.7). The Demon provided the estimate (4.9) closest to the reference value. The PCA and hemispherical photographs underestimate mean LAI by 30% (3.3) and 19% (3.8), respectively, if used without correction. Based on fish-eye sensors, LAI estimates can be improved if 3 annuli (4.2) or 2 annuli (4.5) are used in place of 5 with the PCA, or by means of logarithmic averaging of gap fractions over azimuth at an appropriate angular resolution (180 degrees: 4.6, or 120 degrees: 5.2) with hemispherical photographs. Not taking into account azimuthal variation in gap fraction distribution generates a more important error than the error induced by light scattering near horizon. In order to improve LAI estimates, an original iterative procedure is presented, which allows the simultaneous calculation of LAI over a broad range of angular azimuthal resolutions.  相似文献   

14.
Plant population geometry effective in light utilization for photosynthesis was examined with the use of square-planted (SP) population models and the Monte Carlo technique. Varying SP populations were constructed by manipulating the structural variables, leaf area density, leaf size, leaf number, height/width ratio of unit stand and planting distance, of the unit stand with standard configurations treated in the second paper. Leaf area index was fixed to be 5, and the phyllotaxis, 1/3. The effects of these structural variables on the light extinction in the SP populations were made clear with light-beam emission experiments in a computer. Special combinations of the variables could make light extinction in the infinite population approximately linear with increasing leaf area index to obtain the highest photosynthesis of the foliage, i.e., each leaf layer from top to bottom of the population could uniformly utilize light energy for photosynthetic production.  相似文献   

15.
It is unclear whether the shift in leaf traits between species of high- and low-rainfall sites is caused by low rainfall or by species replacement, because leaf traits vary substantially among species and sites. Our objective was to test if the within-species relationship between specific leaf area (SLA) and leaf N concentration (N(mass) ) shifts across a rainfall gradient in the semi-arid sandy lands of northern China. Data for SLA and N(mass) of dominant species and related canopy and soil variables were collected from 33 plots along a rainfall transect (270-390 mm) having similar temperatures in the Mu Us, Inner Mongolia. We further investigated the generality of Mu Us data using 12 additional plots in the southeastern Qaidam Basin, Qinghai. Artemisia ordosica is a widespread species in both regions. Across and within species, the positive SLA-N(mass) relationship shifted between two plant groups in the lowest rainfall plots (270 mm) and other higher rainfall plots (320-390 mm), which was confirmed by additional data from Qinghai. For A. ordosica populations, leaf area index (LAI) decreased and N(mass) increased with decreasing rainfall, while the foliage N pool and SLA varied little. Rainfall was the limiting factor that determined variations in N(mass) and LAI. Accordingly, N(mass) /SLA ratios continually increased with decreasing LAI along the rainfall gradient (r = -0.76, P < 0.001). Results indicate a low rainfall-induced shift in the SLA-N(mass) relationship associated with changes in LAI and foliage N pool, suggesting a link between leaf characteristics and ecosystem function.  相似文献   

16.
Summary Competition for light among species in a mixed canopy can be assessed quantitatively by a simulation model which evaluates the importance of different morphological and photosynthetic characteristics of each species. A model was developed that simulates how the foliage of all species attenuate radiation in the canopy and how much radiation is received by foliage of each species. The model can account for different kinds of foliage (leaf blades, stems, etc.) for each species. The photosynthesis and transpiration for sunlit and shaded foliage of each species is also computed for different layers in the canopy. The model is an extension of previously described single-species canopy photosynthesis simulation models. Model predictions of the fraction of foliage sunlit and interception of light by sunlit and shaded foliage for monoculture and mixed canopies of wheat (Triticum aestivum) and wild oat (Avena fatua) in the field compared very well with measured values. The model was used to calculate light interception and canopy photosynthesis for both species of wheat/wild oat mixtures grown under normal solar and enhanced ultraviolet-B (290–320 nm) radiation (UV-B) in a glasshouse experiment with no root competition. In these experiments, measurements showed that the mixtures receiving enhanced UV-B radiation had a greater proportion of the total foliage area composed of wheat compared to mixtures in the control treatments. The difference in species foliage area and its position in the canopy resulted in a calculated increase in the portion of total canopy radiation interception and photosynthesis by wheat. This, in turn, is consistent with greater canopy biomass of wheat reported in canopies irradiated with supplemental UV-B.  相似文献   

17.
A model of dynamics of leaves and nitrogen is developed to predict the effect of environmental and ecophysiological factors on the structure and photosynthesis of a plant canopy. In the model, leaf area in the canopy increases by the production of new leaves, which is proportional to the canopy photosynthetic rate, with canopy nitrogen increasing with uptake of nitrogen from soil. Then the optimal leaf area index (LAI; leaf area per ground area) that maximizes canopy photosynthesis is calculated. If leaf area is produced in excess, old leaves are eliminated with their nitrogen as dead leaves. Consequently, a new canopy having an optimal LAI and an optimal amount of nitrogen is obtained. Repeating these processes gives canopy growth. The model provides predictions of optimal LAI, canopy photosynthetic rates, leaf life span, nitrogen use efficiency, and also the responses of these factors to changes in nitrogen and light availability. Canopies are predicted to have a larger LAI and a higher canopy photosynthetic rate at a steady state under higher nutrient and/or light availabilities. Effects of species characteristics, such as photosynthetic nitrogen use efficiency and leaf mass per area, are also evaluated. The model predicts many empirically observed patterns for ecophysiological traits across species.  相似文献   

18.
In an intertidal zone on Choshi coast, Japan,Phyllospadix iwatensis Makino emerges at daytime in spring and summer, while at night time in winter. The plants therefore experience seasonally different stresses caused by emergence, for example, intense light, ultraviolet rays, extreme temperature and desiccation, all of which the plants are unable to avoid during daytime emergence. Seasonal changes in the biomass and LAI suggest that the optimum periods for growth ofP. iwatensis would be in March when the emergent period is short or nil and light availability is high while water temperature is not too low. Dense foliage and low canopy height ofP. iwatensis in the intertidal zone relieve the plant from the stresses in emergent periods and from the disturbance caused by strong water movement in some coastal areas with active wave action.  相似文献   

19.
Liu Z  Jin G  Qi Y 《PloS one》2012,7(3):e32155
Leaf area index (LAI) is an important variable in the study of forest ecosystem processes, but very few studies are designed to monitor LAI and the seasonal variability in a mixed forest using non-destructive sampling. In this study, first, true LAI from May 1(st) and November 15(th) was estimated by making several calibrations to LAI as measured from the WinSCANOPY 2006 Plant Canopy Analyzer. These calibrations include a foliage element (shoot, that is considered to be a collection of needles) clumping index measured directly from the optical instrument, TRAC (Tracing Radiation and Architecture of Canopies); a needle-to-shoot area ratio obtained from shoot samples; and a woody-to-total area ratio. Second, by periodically combining true LAI (May 1(st)) with the seasonality of LAI for deciduous and coniferous species throughout the leaf-expansion season (from May to August), we estimated LAI of each investigation period in the leaf-expansion season. Third, by combining true LAI (November 15(th)) with litter trap data (both deciduous and coniferous species), we estimated LAI of each investigation period during the leaf-fall season (from September to mid-November). Finally, LAI for the entire canopy then was derived from the initial leaf expansion to the leaf fall. The results showed that LAI reached its peak with a value of 6.53 m(2) m(-2) (a corresponding value of 3.83 m(2) m(-2) from optical instrument) in early August, and the mean LAI was 4.97 m(2) m(-2) from May to November using the proposed method. The optical instrument method underestimated LAI by an average of 41.64% (SD = 6.54) throughout the whole study period compared to that estimated by the proposed method. The result of the present work implied that our method would be suitable for measuring LAI, for detecting the seasonality of LAI in a mixed forest, and for measuring LAI seasonality for each species.  相似文献   

20.
本文采用门司、佐伯的大田切片法,研究不同密度夏谷群落的生产结构、群落内光的分布以及消光系数的变化。目的在于探讨一个比较合理的夏谷密度以及日平均消光系数的简易求法。从试验结果可以看出:1.在不同密度的群落中,密度中等的群落(4.75万/亩),地上部生物量(724.5克/米2),穗重(289.81克/米2)和叶面积指数等是最高的。看出夏谷在4.5—5万/亩的密度较为适宜。2.群落的密度和消光系数之间呈正相关,群落消光系数随着群落密度的增加而加大。而群落消光系数与群落内日平均光强呈负相关。3.不同密度夏谷群落消光系数日变化的趋势均呈早晚高、中午低的谷型曲线。经实测,上午9点和下午3点左右测得的瞬时k值与群落的日平均k值较为接近。为此可以用这二时刻的任一瞬时k值作为日平均k值的近似值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号