首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Antagonists of the platelet fibrinogen receptor (GP IIb/IIIa receptor) are expected to be a new promising class of antithrombotic agents. The binding of fibrinogen to the fibrinogen receptor depends on an Arg-Gly-Asp-Ser (RGDS) tetrapeptide recognition motif. Structural modifications of the RGDS lead have led to the discovery of a non-peptide RGD mimetic GP IIb/IIIa antagonist20 (S 1197). Compound20 inhibits dose-dependently and reversibly human platelet aggregation. Modeling studies based on structure-activity data revealed the following structural features of the drug as important for receptor binding: the amidino group, the carboxylate group, hydrophobic substitutions at the carboxyl-terminus and at the side chain carrying the positive charge, the carboxyl-terminal NH group of the β-amino acid as a hydrogen bond donor and one oxygen atom of the hydantoin as a hydrogen bond acceptor. The ethyl ester prodrug of20 (S 5740) is an orally active antithrombotic agent which has the potential to be used to treat and prevent thrombotic diseases in humans.  相似文献   

2.
A conformation-dependent epitope of human platelet glycoprotein IIIa.   总被引:2,自引:0,他引:2  
This study explores conformational states of human platelet glycoprotein IIIa (GP IIIa) and possible mechanisms of fibrinogen receptor exposure. D3GP3 is an IgG1, kappa monoclonal antibody generated against purified GP IIIa and found to be specific for GP IIIa by immunoprecipitation and Western blot analysis. The binding of D3GP3 to resting platelets caused fibrinogen binding (approximately 5,000 molecules/platelet) and platelet aggregation but not secretion. Platelets express 40,000-50,000 GP IIb-IIIa molecules in their surface membranes. However, resting platelets only bound approximately 5,000 D3GP3 molecules/platelet. D3GP3 binding to platelets could be increased 2-3-fold by dissociation of the GP IIb-IIIa complex with 5 mM EDTA or by occupying the fibrinogen receptor with either RGDS peptides or fibrinogen. Platelet stimulation with ADP in the absence of fibrinogen did not cause increased D3GP3 binding above control levels. These data suggest that 1) GP IIb-IIIa can exist in multiple conformations in the platelet membrane, 2) D3GP3 binding to GP IIIa can expose the fibrinogen receptor, 3) the binding of either RGDS peptides or fibrinogen causes exposure of the D3GP3 epitope, and 4) platelet activation in the absence of ligand does not induce the same conformational changes in GP IIb-IIIa as does receptor occupancy by RGDS peptides or fibrinogen.  相似文献   

3.
The effects of content of a fibrinogen receptor, glycoprotein (GP) IIb–IIIa (αIIb/β3-integrin), GP IIIa genetic polymorphism (substitution Leu33Pro), and fibrinogen concentration in blood plasma on platelet aggregation activity have been investigated in a group of healthy volunteers. In 35 examined donors the GP IIb–IIIa content on platelet surface varied from 40 to 71 × 103 per platelet. Repeated measurements revealed that the GP IIb–IIIa content coefficient of variation was 9.5%, and deviations from mean levels did not exceed 20%. The level and the rate of platelet aggregation induced by ADP (1.25–20 μM) correlated with GP IIb–IIIa number (r from 0.315 to 0.591) and were higher in the group of donors with high in comparison with low GP IIb–IIIa content (>60 and (40–50) × 10?3 per platelet, respectively). Aspirin, the inhibitor of thromboxane A2 synthesis, partially suppressed ADP-induced platelet aggregation. The level of residual aggregation in the presence of aspirin also correlated with GP IIb–IIIa content and increased in subjects with high receptor content. Parameters of ADP-induced aggregation did not differ in donors with genotypes GP IIIa Pro33(?) (Leu33Leu33, n = 20) and Pro33(+) (Leu33Pro33, n = 13, and Pro33Pro33, n = 2) genotype. GP IIb–IIIa content was also not affected by GP IIIa polymorphism. No significant correlations were found between the level and rate of platelet aggregation and fibrinogen concentration in blood plasma. The data obtained indicate that the effects of variations of GP IIb–IIIa content on platelet aggregation are higher than GP IIIa Leu33Pro polymorphism and variations of fibrinogen concentration. High GP IIb–IIIa content is associated with increased platelet aggregation activity and decreased efficacy of aggregation inhibition by aspirin.  相似文献   

4.
The glycoprotein IIb-IIIa complex (GP IIb-IIIa) is a platelet cell-surface receptor for fibrinogen and fibronectin. A carboxyl-terminal decapeptide of the fibrinogen gamma-chain (Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val LGGAKQAGDV] and a tetrapeptide (Arg-Gly-Asp-Ser (RGDS] from the fibrinogen alpha-chain and the fibronectin cell-binding domain appear to mediate the binding of these ligands to GP IIb-IIIa. The present study was designed to examine the effects of these and related peptides on the structure of purified platelet GP IIb-IIIa. Treatment of GP IIb-IIIa with various synthetic peptides affected the glycoprotein so that GP IIb alpha became a substrate for hydrolysis by thrombin. The order of potency of these peptides was as follows: RGDS greater than LGGAKQAGDV greater than KGDS greater than RGES. This is the same order of potency in which these peptides inhibit fibrinogen binding to platelets. This effect was time-, temperature-, and concentration-dependent; RGDS induced a half-maximal effect at approximately 60 microM. In addition, RGDS, but not RGES, decreased the intensity of the intrinsic protein fluorescence of GP IIb-IIIa. Finally, the decapeptide or RGDS decreased the sedimentation coefficient of GP IIb-IIIa from 8.5 to 7.7 or 7.4 S, respectively, whereas RGES had a minimal effect. This decrease was accompanied by an increase in the Stoke's radius from 74 to 82 A with RGDS or 85 A with the decapeptide, indicating a peptide-induced unfolding of the GP IIb-IIIa complex. This change in conformation may be related to changes in the distribution and function of GP IIb-IIIa on the platelet surface that occur when adhesive proteins or peptides from the GP IIb-IIIa binding domains of these proteins bind to GP IIb-IIIa.  相似文献   

5.
Glycoprotein (GP) IIb and IIIa are major constituents of the platelet membrane which are involved in forming the fibrinogen receptor on activated platelets. We used flow cytometry to study the effects of ethylene-diamine tetraacetic acid (EDTA) on the membrane GPIIb/IIIa complexes of platelets and microparticles, and to study the effects of cations on dissociated GP complexes. Microparticles were detected by both the volume signal and by fluorescence using an FITC-conjugated anti-GPIb antibody (NNKY5-5). When platelets were stimulated with ADP, calcium ionophore A23187, or thrombin, fibrinogen binding to the platelet surface increased markedly. However, fibrinogen binding to microparticles showed little increase in response to such agonists. Microparticle GPIIb/IIIa complexes were dissociated by incubation with EDTA at 37 degrees C but did not reassociate after treatment with divalent cations (Ca2+, Mg2+, and Mn2+) in contrast to platelet GPIIb/IIIa complexes. These results suggest that some interaction of GPIIb/IIIa and linked structures like the platelet cytoskeleton may be involved in the reassociation of dissociated GPIIb and GPIIIa, perhaps explaining the failure of reassociation of microparticle GPIIb/IIIa (i.e., the fibrinogen binding to microparticles).  相似文献   

6.
Antiplatelet agents are clinically useful as antithrombotic entities. The importance of antiplatelet agents led us to design, synthesize, and characterize a new antiplatelet peptide. This peptide is a presumptive mimic of a ligand binding site on the platelet fibrinogen receptor. Unlike peptides related to Arg-Gly-Asp-Ser and His-His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val that bind to the fibrinogen receptor, this peptide binds to fibrinogen. The anticomplementarity hypothesis was used to design this presumptive peptide mimic of the vitronectin binding site on the fibrinogen receptor, glycoprotein IIb/IIIa complexes. The resulting peptide (Glu-His-Ile-Pro-Ala) has the characteristics of a fibrinogen binding site mimic: It binds fibrinogen and inhibits both the adhesion of platelets to fibrinogen and platelet aggregation. The peptide also inhibits the adhesion of platelets to vitronectin. The antiplatelet activity of this mimic peptide was dependent on its amino acid sequence, since closely related analogues were either inactive or less active inhibitors of platelet function than the original peptide. These results demonstrate that the peptide Glu-His-Ile-Pro-Ala has the characteristics expected of a mimic of a glycoprotein IIb/IIIa ligand binding site.  相似文献   

7.
Triflavin, an antiplatelet peptide containing Arg-Gly-Asp, purified from Trimeresurus flavoviridis venom, inhibits aggregation of human platelets stimulated by a variety of agonists. It blocks aggregation through interference with fibrinogen binding to its specific receptor on the platelet surface membrane in a competitive manner, but it has no apparent effect on intracellular events, such as thromboxane B2 formation, phosphoinositides breakdown and intracellular Ca2+ mobilization of thrombin-activated platelets. In this study, we determined the complete sequence of triflavin, which is composed of a single polypeptide chain of 70 amino acids. Its sequence is rich in cysteine and contains Arg-Gly-Asp at residues 49-51 in the carboxy-terminal domain. Triflavin shows about 68% identity of amino acid sequence with trigramin, which is a specific antagonist of the fibrinogen receptor associated with glycoprotein IIb/IIIa complex. [125I]Triflavin binds to unstimulated and ADP-stimulated platelets in a saturable manner and its Kd values are estimated to be 76 and 74 nM, respectively; the corresponding numbers of binding sites are 31,029 and 34,863 per platelet, respectively. [125I]Triflavin binding is blocked by Gly-Arg-Gly-Asp-Ser in a competitive manner. EDTA, the Arg-Gly-Asp-containing peptides (including naturally occurring polypeptides, trigramin and rhodostomin), and monoclonal antibody, 7E3, raised against GP IIb/IIIa complex, inhibit [125I]triflavin binding to unstimulated and ADP-stimulated human platelets. In conclusion, triflavin specifically binds to fibrinogen receptor associated with GP IIb/IIIa complex and its binding site is located at or near GP IIb/IIIa complex, overlapping with those of 7E3 and another Arg-Gly-Asp-containing polypeptide, rhodostomin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Platelet activation converts the membrane GP IIb-IIIa complex into a functional receptor for fibrinogen, but the mechanism is poorly understood. We asked whether induction of receptor competency coincides with a conformational change affecting the spatial arrangement of exoplasmic domains of the IIb and IIIa subunits. Epitopes on these subunits were labeled with monoclonal antibodies conjugated to either a donor fluorescein (FITC) or an acceptor tetramethylrhodamine (TR) chromophore. Then, fluorescence resonance energy transfer (RET) between platelet-bound FITC and TR was measured by flow cytometry. In unstimulated platelets, 6-8% RET efficiency was detected between antibody B1B5, bound to GP IIb, and antibody SSA6, bound to GP IIIa, regardless of which antibody served as RET donor. RET was also observed between these antibodies and A2A9, an antibody specific for the GP IIb-IIIa complex. Cell stimulation by thrombin, ADP plus epinephrine or phorbol-ester caused up to a 2-fold increase in RET between chromophore-labeled, platelet-bound B1B5, SSA6, and A2A9 (p less than or equal to 0.05), suggesting a change in the separation or orientation of these epitopes within the GP IIb-IIIa complex. The activation-related conformational change detected by the increase in RET between antibody B1B5 and SSA6 was independent of receptor occupancy since it was unaffected by the addition of fibrinogen or by the inhibition of fibrinogen binding by the antibody, A2A9, or the peptide, RGDS. In contrast to these results with antibodies bound to different epitopes within GP IIb-IIIa, no RET was observed between FITC-A2A9 and TR-A2A9 bound to different GP IIb-IIIa complexes or between a TR-labeled GP Ib antibody and FITC-labeled GP IIb-IIIa antibodies. These studies demonstrate that platelet activation causes a change in the spatial separation or orientation of exoplasmic domains within GP IIb and IIIa, which may serve to convert this integrin into a functional adhesion receptor.  相似文献   

9.
We have applied the principle of complementary hydropathy to the prediction of the binding site for fibronectin (FN) and for the alpha-chain of fibrinogen in the platelet receptor complex glycoprotein (GP) IIb-IIIa. Since both ligands bind to it through their respective RGDS (Arg-Gly-Asp-Ser) domains and since both have been cloned, we were able to deduce the amino acid sequence of the binding site from the nucleotide sequence coding for RGDS in both proteins. The deduced peptides were very similar. Antibodies raised against a synthetic peptide WTVPTA (Trp-Thr-Val-Pro-Thr-Ala) deduced from the cloned rat FN RGDS domain block ADP-mediated platelet aggregation; this block can be overcome by additional fibrinogen. In Western blots of whole cell platelet extracts run under reducing conditions, this antibody binds to a 108-kDa band. It also binds to affinity-purified GP IIIa. Furthermore, it reacts strongly with GP IIIa immunoprecipitated by a commercially available anti-GP IIb-IIIa monoclonal antibody. Binding of affinity-purified GP IIb-IIIa complex to fibronectin is inhibited by the 110-kDa FN fragment. Similar inhibitions can be effected by WTVPTA (Trp-Thr-Val-Pro-Thr-Ala) and GAVSTA (Gly-Ala-Val-Ser-Thr-Ala) predicted from the rat and human fibronectin nucleotide sequences, respectively. GAGSTA (Gly-Ala-Gly-Ser-Thr-Ala) and GARSTA (Gly-Ala-Arg-Ser-Thr-Ala) related to the human peptide but with discrepant hydropathies are noninhibitory.  相似文献   

10.
Platelet glycoproteins IIb and IIIa function as a fibrinogen receptor on the activated platelet. We have shown that these glycoproteins can be incorporated onto the surface of phosphatidylcholine vesicles with retention of fibrinogen and antibody binding properties and can permit Ca2+ transit across the phospholipid bilayer. In the current study we demonstrate that this apparent Ca2+ channel function is specifically inhibited by the synthetic analogue of the fibrinogen gamma COOH-terminal peptide, His-His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val (His-12-Val), but not by the adhesive protein sequence Arg-Gly-Asp-Ser (RGDS). Prior incubation of IIb-IIIa liposomes with RGDS prevented Ca2+ transit inhibition by 25 microM His-12-Val, analogous to RGDS inhibition of His-12-Val binding to platelets. His-12-Val inhibited a minor component of transmembrane Ca2+ influx into ADP and thrombin-activated human platelets but had no effect on steady-state platelet 45Ca flux. These data indicate that ligand binding may exert a regulatory influence on transmembrane Ca2+ influx into activated platelets. The difference in inhibitory potency of the peptides studied may be related to differences in conformational changes in the glycoprotein IIb-IIIa complex induced by His-12-Val and RGDS, steric considerations, or differences in interactions with glycoprotein IIb Ca2+ binding domains.  相似文献   

11.
Thrombin plays a central role in normal and abnormal hemostatic processes. It is assumed that alpha-thrombin activates platelets by hydrolyzing the protease-activated receptor (PAR)-1, thereby exposing a new N-terminal sequence, a tethered ligand, which initiates a cascade of molecular reactions leading to thrombus formation. This process involves cross-linking of adjacent platelets mediated by the interaction of activated glycoprotein (GP) IIb/IIIa with distinct amino acid sequences, LGGAKQAGDV and/or RGD, at each end of dimeric fibrinogen molecules. We demonstrate here the existence of a second alpha-thrombin-induced platelet-activating pathway, dependent on GP Ib, which does not require hydrolysis of a substrate receptor, utilizes polymerizing fibrin instead of fibrinogen, and can be inhibited by the Fab fragment of the monoclonal antibody LJIb-10 bound to the GP Ib thrombin-binding site or by the cobra venom metalloproteinase, mocarhagin, that hydrolyzes the extracellular portion of GP Ib. This alternative alpha-thrombin pathway is observed when PAR-1 or GP IIb/IIIa is inhibited. The recognition sites involved in the cross-linking of polymerizing fibrin and surface integrins via the GP Ib pathway are different from those associated with fibrinogen. This pathway is insensitive to RGDS and anti-GP IIb/IIIa antibodies but reactive with a mutant fibrinogen, gamma407, with a deletion of the gamma-chain sequence, AGDV. The reaction is not due to simple trapping of platelets by the fibrin clot, since ligand binding, signal transduction, and second messenger formation are required. The GP Ib pathway is accompanied by mobilization of internal calcium and the platelet release reaction. This latter aspect is not observed with ristocetin-induced GP Ib-von Willebrand factor agglutination nor with GP Ib-von Willebrand factor-polymerizing fibrin trapping of platelets. Human platelets also respond to gamma-thrombin, an autoproteolytic product of alpha-thrombin, through PAR-4. Co-activation of the GP Ib, PAR-1, and PAR-4 pathways elicit synergistic responses. The presence of the GP Ib pathway may explain why anti-alpha-thrombin/anti-platelet regimens fail to completely abrogate thrombosis/restenosis in the cardiac patient.  相似文献   

12.
Tetrapeptides containing the sequence Arg-Gly-Asp (RGD) antagonize fibrinogen binding to its platelet receptor (gp IIb/IIIa, integrin alpha IIb beta 3) and inhibit platelet aggregation in vitro. The peptides RGDS and RGDY(Me)-NH2 were rapidly degraded when incubated in human, rat, and dog plasma. HPLC analysis indicated that amino acids were sequentially removed from the peptide N-terminus, and this degradation was prevented by the aminopeptidase inhibitor bestatin. Analogs of RGDY(Me)-NH2 with an acetylated or deleted alpha-amino group were prepared. Both analogs were stable when incubated in plasma, blocked 125I-fibrinogen binding to activated platelets (IC50 = 10-30 microM) and inhibited ADP induced platelet aggregation (IC50 = 10-30 microM). This study concludes that aminopeptidase rapidly degrades RGD peptides in plasma, an important issue for in vivo testing of RGD peptides and analogs. RGD analogs intrinsically stabilized against aminopeptidase are stable in plasma and are important tools for antithrombotic studies involving antagonism of gp IIb/IIIa.  相似文献   

13.
S A Santoro  W J Lawing 《Cell》1987,48(5):867-873
Two distinct sequences of amino acids, RGDS and HHLGGAKQAGDV, each inhibit the binding of fibrinogen, fibronectin, and von Willebrand factor to the platelet membrane glycoprotein IIb-IIIa complex. We have employed radiolabeled, photoactivatable aryl azide derivatives of the two sequences to explore the relationship between the binding sites for these peptides on the glycoprotein IIb-IIIa complex. Each probe specifically labeled only the glycoprotein IIb-IIIa complex of intact platelets. Since each peptide inhibited labeling of the receptor complex by the other, the peptides compete for binding sites on the receptor complex. However, the binding sites do not appear to be identical. Whereas the RGDS probe specifically labeled both glycoproteins IIb and IIIa, the HHLGGAKQA-GDV probe specifically labeled only glycoprotein IIb.  相似文献   

14.
抗血小板治疗在血栓性疾病的防治中发挥重要作用,血小板膜糖蛋白 GP IIb/IIIa 受体的活化是血小板聚集的最终共同通路。目 前的研究发现,多种新型多肽能与 GP IIb/IIIa 受体特异性结合,从而发挥抗血小板聚集的药理作用。分类综述含有或类似 RGD 序列和非 RGD 序列的新型抗血小板多肽类药物研究进展。  相似文献   

15.
Several lines of evidence indicate that the platelet membrane glycoprotein IIb-IIIa complex (GP IIb-IIIa) is necessary for the expression of platelet fibrinogen receptors. The purpose of the present study was to determine whether purified GP IIb-IIIa retains the properties of the fibrinogen receptor on platelets. Glycoprotein IIb-IIIa was incorporated by detergent dialysis into phospholipid vesicles composed of 30% phosphatidylcholine and 70% phosphatidylserine. 125I-Fibrinogen binding to the GP IIb-IIIa vesicles, as measured by filtration, had many of the characteristics of 125I-fibrinogen binding to whole platelets or isolated platelet plasma membranes: binding was specific, saturable, reversible, time dependent, and Ca2+ dependent. The apparent dissociation constant for 125I-fibrinogen binding to GP IIb-IIIa vesicles was 15 nM, and the maximal binding capacity was 0.1 mol of 125I-fibrinogen/mol of GP IIb-IIIa. 125I-Fibrinogen binding was inhibited by amino sugars, the GP IIb and/or IIIa monoclonal antibody 10E5, and the decapeptide from the carboxyl terminus of the fibrinogen gamma chain. Furthermore, little or no 125I-fibrinogen bound to phospholipid vesicles lacking protein or containing proteins other than GP IIb-IIIa (i.e. bacteriorhodopsin, apolipoprotein A-I, or glycophorin). Also, other 125I-labeled plasma proteins (transferrin, orosomucoid) did not bind to the GP IIb-IIIa vesicles. These results demonstrate that GP IIb-IIIa contains the platelet fibrinogen receptor.  相似文献   

16.
The platelet integrin glycoprotein (GP) IIb/IIIa, which mediates platelet aggregation, has been the target for novel antiplatelet agents, the GPIIb/IIIa antagonists. Several GPIIb/IIIa antagonists have been developed based on the peptide RGDS present in adhesion proteins, including the principle ligand fibrinogen. The apoptosis enzyme, procaspase-3, contains an RGD-recognition sequence and is activated by RGDS. We examined the effects of RGDS and several GPIIb/IIIa antagonists on cell death and procaspase-3 activation in rat neonatal cardiomyocytes. These antagonists do not recognize rat integrins, yet RGDS, orbofiban, and xemilofiban induced dose-dependent apoptosis and procaspase-3 activation in cardiomyocytes over 72 h, particularly under hypoxic conditions. Scrambled peptide, the monoclonal antibody 7E3 or integrelin (a peptide containing a KGD sequence), had little or no effect. Immunoprecipitation of procaspase-3 followed by treatment with the compounds showed that procaspase-3 was activated directly by RGDS, orbofiban, xemilofiban, and by monoclonal 7E3 antibody, the latter demonstrating that compounds must enter cells to induce apoptosis through caspase activation. Integrelin had no effect. Binding studies with (3)H-SC52012B, a GPIIb/IIIa antagonist analogue of orbofiban, showed no specific binding to cardiomyocytes, but the radioligand accumulated intracellularly over 72 h. (3)H-SC52012B also bound directly to human recombinant caspase-3 (K(d), 59 +/- 2 nm), and this was prevented by orbofiban, xemilofiban, and the monoclonal 7E3 antibody but not by integrelin. Finally confocal microscopy showed that RGDS co-localized with caspase-3 inside the cell. These data show that RGDS and its mimetics induce cardiomyocyte apoptosis by direct activation of procaspase-3.  相似文献   

17.
Summary RGD-peptidomimetics are currently being investigated as a class of potential antithrombotics that antagonize the fibrinogen receptor, GP IIb/IIIa, on the surface of platelets. These mimetics are expected to have decisive advantages-such as higher activity and specificity, oral bioavailability and longer duration of action-over known antithrombotics. For further optimization in this respect, novel peptidomimetic GP IIb/IIIa antagonists with an oxazolidinonemethyl central building block were synthesized. This building block proved to be very versatile as an anchor for structurally different C-termini and was the starting point for highly efficient and orally active compounds.  相似文献   

18.
Platelet membrane glycoprotein (GP) IIIa forms a Ca2+-dependent heterodimer complex with GP IIb. The GP IIb-IIIa complex constitutes the fibrinogen and fibronectin receptor on stimulated platelets. A biochemically and immunologically similar membrane glycoprotein complex is present on endothelial cells. A human umbilical vein endothelial cell cDNA library was screened using oligonucleotide probes designed from peptide sequences obtained from platelet GP IIIa. A cDNA clone was sequenced and found to encode a protein of 84.5 kDa. The translated endothelial cDNA contained five sequences that corresponded to peptide sequences in platelet GP IIIa, including the amino-terminal 19 residues. Thus, the endothelial and platelet forms of GP IIIa are apparently identical. Glycoprotein IIIa consists of a long amino-terminal extracellular domain with several potential N-linked glycosylation sites and four cysteine-rich tandem repeats, a 29-residue hydrophobic transmembrane segment, and a short carboxyl-terminal cytoplasmic domain. Glycoprotein IIIa has a 47% amino acid sequence homology to "integrin," a fibronectin receptor from chicken embryo fibroblasts. This homology suggests that GP IIIa is a member of a family of cell-surface adhesion receptors.  相似文献   

19.
Platelet activation is accompanied by the appearance on the platelet surface of approximately 45,000 receptor sites for fibrinogen. The binding of fibrinogen to these receptors is required for platelet aggregation. Although it is established that the fibrinogen receptor is localized to a heterodimer complex of the membrane glycoproteins, IIb and IIIa, little is known about the changes in this complex during platelet activation that result in the expression of the receptor. In the present studies, we have developed and characterized a murine monoclonal anti-platelet antibody, designated PAC-1, that binds to activated platelets, but not to unstimulated platelets. PAC-1 is a pentameric IgM that binds to agonist-stimulated platelets with an apparent Kd of 5 nM. Binding to platelets is dependent on extracellular Ca2+ (KCa = 0.4 microM) but is not dependent on platelet secretion. Platelets stimulated with ADP or epinephrine bind 10,000-15,000 125I-PAC-1 molecules/platelet while platelets stimulated with thrombin bind 20,000-25,000 molecules/platelet. Several lines of evidence indicate that PAC-1 is specific for the glycoprotein IIb.IIIa complex. First, PAC-1 binds specifically to the IIb.IIIa complex on Western blots. Second, PAC-1 does not bind to thrombasthenic platelets or to platelets preincubated with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid at 37 degrees C, both of which lack the intact IIb.IIIa complex. Third, PAC-1 competitively inhibits the binding of 125I-A2A9, and IgG monoclonal antibody that is specific for the IIb.IIIa complex. Fourth, the antibody inhibits fibrinogen-mediated platelet aggregation. These data demonstrate that PAC-1 recognizes an epitope on the IIb.IIIa complex that is located near the platelet fibrinogen receptor. Platelet activation appears to cause a Ca2+-dependent change involving the glycoprotein IIb.IIIa complex that exposes the fibrinogen receptor and, at the same time, the epitope for PAC-1.  相似文献   

20.
BackgroundIn patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary PCI, few data exist on the magnitude of platelet activation, aggregation and dosing of glycoprotein (GP) IIb/IIIa receptor inhibitors. Methods Sixty STEMI patients were randomised to abciximab, to high-dose tirofiban or to no additional GP IIb/IIIa inhibitor treatment. Platelet activation (P-selectin expression) was measured using flow cytometry and the level of inhibition of platelet aggregation was assessed using the Plateletworks assay. Additionally, the PFA-100 with the collagen/adenosine-diphosphate cartridge (CADP) was used to compare the levels of platelet inhibition. All measurements were performed at baseline (T0), immediately after (T1), 30 minutes (T2), 60 minutes (T3) and 120 minutes (T4) after primary PCI. Results The level of platelet activation in both GP IIb/IIIa receptor inhibitor treated groups was significantly lower compared with the control group at all time points after primary PCI (p=0.04). Also the administration of the currently recommended dose of abciximab resulted in significantly lower levels of inhibition of aggregation compared with high-dose tirofiban (p<0.0001). In addition, the CADP closure times were significantly prolonged in both GP IIb/IIIa inhibitor treated groups compared with the control group at time points T1 (p=0.006) and T4 (p<0.0001). Conclusion The administration of high-dose tirofiban resulted in a significantly higher inhibition of platelet aggregation compared with the currently recommended dose of abciximab. Large clinical trials are needed to assess whether this laboratory superiority of high-dose tirofiban translates into higher clinical efficacy. (Neth Heart J 2007;15:375-81.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号