共查询到20条相似文献,搜索用时 0 毫秒
1.
Anderson WG Good JP Pillans RD Hazon N Franklin CE 《Journal of experimental zoology. Part A, Comparative experimental biology》2005,303(10):917-921
Plasma urea levels and hepatic urea production in the euryhaline bull shark, Carcharhinus leucas, acclimated to freshwater and seawater environments were measured. It was found that plasma urea concentration increased with salinity and that this increase was, in part, the result of a significant increase in hepatic production of urea. This study provides direct evidence that hepatic production of urea plays an important role in the osmoregulatory strategy of C. leucas. 相似文献
2.
Reproductive philopatry in bull sharks Carcharhinus leucas was investigated by comparing mitochondrial (NADH dehydrogenase subunit 4, 797 base pairs and control region genes 837 base pairs) and nuclear (three microsatellite loci) DNA of juveniles sampled from 13 river systems across northern Australia. High mitochondrial and low microsatellite genetic diversity among juveniles sampled from different rivers (mitochondrial φ(ST) = 0·0767, P < 0·05; microsatellite F(ST) = -0·0022, P > 0·05) supported female reproductive philopatry. Genetic structure was not further influenced by geographic distance (P > 0·05) or long-shore barriers to movement (P > 0·05). Additionally, results suggest that C. leucas in northern Australia has a long-term effective population size of 11 000-13 000 females and has undergone population bottlenecks and expansions that coincide with the timing of the last ice-ages. 相似文献
3.
Ampullary receptor organs of African mormyrids consist of a cavity beneath the epidermis. The wall of the cavity contains embedded receptor cells and two types of supporting cells. A canal extends from the cavity to an opening at the surface. The lumen of the canal and the ampulla are filled with a jelly-like material and dense cylinders apparently secreted by two types of supporting cells. Flattened cells of the canal wall are joined by occluding junctions. Synapses between receptor cells and the afferent nerve fiber are characterized by a presynaptic dense body, but presynaptic vesicles were not observed. Degenerating receptor cells are occasionally seen among normal receptor cells in the base of the organ. 相似文献
4.
Understanding the energy requirements for captive sharks is important for their successful long-term maintenance. This information is critical in assessing the health of the animals and the suitability of their environment. We studied five bull sharks (Carcharhinus leucas) for up to 7 years in a 2.5 × 106 liter oceanarium. Individual animal feedings provided information for food intake analysis. During the first 3 years, fork length increase was estimated to have averaged 1.9 cm/month (s.d. = 0.1), or 23.0 cm/year. Biannual measurements, begun in the fourth year, showed that growth rates decreased during the next 4 years to a mean rate of 0.6 cm/month (s.d. = 0.2), or about 7.0 cm/year. Mean food consumption from June 1988 to December 1992 was 3.4% body weight per week. Caloric conversion of weights incorporated into a simple bioenergetics model providing mean metabolic expenditures per animal was 5.7 (s.d. = 0.3) and 4 (s.d. = 0.5) kcal/kg/day for 1991 and 1992, respectively. © 1994 Wiley-Liss, Inc. 相似文献
5.
Maria L. Habegger Philip J. Motta Daniel R. Huber Mason N. Dean 《Zoology (Jena, Germany)》2012,115(6):354-364
Evaluations of bite force, either measured directly or calculated theoretically, have been used to investigate the maximum feeding performance of a wide variety of vertebrates. However, bite force studies of fishes have focused primarily on small species due to the intractable nature of large apex predators. More massive muscles can generate higher forces and many of these fishes attain immense sizes; it is unclear how much of their biting performance is driven purely by dramatic ontogenetic increases in body size versus size-specific selection for enhanced feeding performance. In this study, we investigated biting performance and feeding biomechanics of immature and mature individuals from an ontogenetic series of an apex predator, the bull shark, Carcharhinus leucas (73–285 cm total length). Theoretical bite force ranged from 36 to 2128 N at the most anterior bite point, and 170 to 5914 N at the most posterior bite point over the ontogenetic series. Scaling patterns differed among the two age groups investigated; immature bull shark bite force scaled with positive allometry, whereas adult bite force scaled isometrically. When the bite force of C. leucas was compared to those of 12 other cartilaginous fishes, bull sharks presented the highest mass-specific bite force, greater than that of the white shark or the great hammerhead shark. A phylogenetic independent contrast analysis of anatomical and dietary variables as determinants of bite force in these 13 species indicated that the evolution of large adult bite forces in cartilaginous fishes is linked predominantly to the evolution of large body size. Multiple regressions based on mass-specific standardized contrasts suggest that the evolution of high bite forces in Chondrichthyes is further correlated with hypertrophication of the jaw adductors, increased leverage for anterior biting, and widening of the head. Lastly, we discuss the ecological significance of positive allometry in bite force as a possible “performance gain” early in the life history of C. leucas. 相似文献
6.
Special cutaneous receptor organs of fish. IV. Ampullary organs of the nonelectric catfish, Kryptopterus 总被引:1,自引:0,他引:1
Ampullary organs of the transparent catfish, Kryptopterus bicirrhus, are present in large numbers on the head and in a regular pattern of lines on the body and fins. The organs lie in the epidermis, and have a pore that opens to the surface. Flattened cells form a roof and walls. On the floor of the organ there are a “sensory hillock,” composed of spherical receptor cells and columnar supporting cells, and a “secretory hillock” composed of columnar secretory cells. The receptor cells are nonciliated and have only afferent innervation. The organ cavity is filled with jelly. The organs are compared with ampullary organs of the weakly electric fish Eigenmannia, ampullae of Lorenzini of Raja, and small pit organs of Amiurus. Structural characteristics of the ampullary organs of Kryptopterus make them especially suitable for electrophysiological studies. 相似文献
7.
8.
S. A. Karl A. L. F. Castro J. A. Lopez P. Charvet G. H. Burgess 《Conservation Genetics》2011,12(2):371-382
The bull shark (Carcharhinus leucas) is a widely distributed, large coastal shark species known to travel long distances. These characteristics, coupled with the species?? long life span and late age of maturity, would lead one to predict significant global genetic exchange among bull shark populations. By contrast, data show localized depletion in some areas of large coastal shark fisheries, indicating some geographic isolation may exist. We examined genetic variation in the control region of mitochondrial DNA and at five nuclear microsatellite loci in bull sharks sampled from the western Atlantic to investigate the degree of population subdivision. The average per sample haplotype and nucleotide diversity in the mtDNA (0.51 ± 0.26 and 0.12% ± 0.12, respectively) and expected heterozygosity (0.84) in the microsatellite loci contrast sharply in having lower and higher values (respectively) relative to many other shark species. Significant structure exists between the Brazilian and all northern populations at the mtDNA control region (pairwise ??ST > 0.8, P < 0.001), but not at the nuclear microsatellite loci. Adjacent northern populations show weak to no genetic differentiation for both markers. These results are congruent with restricted maternal gene flow between populations caused by female site fidelity to nursery areas. We estimate the current effective population size to be around 160,000 and 221,000 individuals for the southern and northern Atlantic populations, respectively. The philopatric habits and the relatively low levels of mtDNA genetic diversity observed in bull sharks must be considered in the conservation of this species. Our results indicate that effective bull shark management strategies will require local, regional, and international attention and cooperation. 相似文献
9.
Two types of ampullary organs are present in the skin of the freshwater salmontail catfish, Arius graeffei, each consisting of a short canal (0.2-0.5 mm) oriented perpendicular to the basement membrane and ending in an ampulla. Histochemical staining techniques (Alcian blue and Lillie's allochrome) indicate that the ampullary canals contain an acidic mucopolysaccharide gel, which is uniform in its staining properties along the canals. Type II ampullary organs consist of a canal, the wall of which is lined with cuboidal epithelial cells. The canal opens into an ampulla with 50-60 receptor cells. Electron microscopy reveals that the pear-shaped receptor cells bear microvilli on their luminal surface and lie adjacent to an unmyelinated neuron. Type III ampullary organs differ from Type II in that the canal wall consists of cells that possess a protein-rich sac at the luminal apex and have a polymorphic nucleus. The canals of Type III ampullary organs open to an ampulla with 8-30 receptor cells similar in both staining properties and structure to those of the Type II organ. In both types of ampullary organs, supportive cells surround each receptor cell except at the apex of the receptor cell. 相似文献
10.
Synopsis Length at age and growth rates for 59 bull sharks, Carcharhinus leucas, collected from the northern Gulf of Mexico were estimated from the band patterns formed seasonally in the vertebral centra. The combined age at length data for both sexes were applied to a von Bertalanffy growth model producing parameter estimates of L = 285 cm TL, K = .076, t0 = –3.0 yr. Lengths at age for males and females were similar except that males did not attain as great a length as females. Growth was apparently slow and varied among individuals, but in general, was estimated to be 15–20 cm yr–1 for the first five years, 10 cm yr–1 for years 6–10, 5–7 cm yr–1 for years 11–16, and less than 4–5 cm yr–1 thereafter. Males mature at 210–220 cm TL or 14–15 yr of age; females mature at>225 cm TL or 18+ yr of age. The largest male (245 cm TL) was 21.3 yr old; the largest female (268 cm TL) was 24.2 yr old. 相似文献
11.
Pillans RD Franklin CE 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2004,138(3):363-371
Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C. leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C. leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24 per thousand SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1 per thousand rise in salinity. Between 24 per thousand and 33 per thousand, plasma osmolarity increased by 33% or 4.7% per 1 per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28 per thousand and 33 per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10 per thousand, 11-20 per thousand and 21-33 per thousand. A comparison between C. leucas captured in FW and estuarine environments (20-28 per thousand ) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C. leucas moving between FW and SW, as well as the ecological implications of these data are discussed. 相似文献
12.
Understanding how animals alter habitat use in response to changing abiotic conditions is important for effective conservation management. For bull sharks (Carcharhinus leucas), habitat use has been widely examined in the eastern and western Gulf of Mexico; however, knowledge of their movements and the factors influencing them is lacking for populations in the more temperate north-central Gulf of Mexico. To examine how changes in hydrographic conditions affected the presence of young bull sharks in Mobile Bay, Alabama, thirty-five sharks were fitted with internal acoustic transmitters and monitored with an acoustic monitoring array consisting of thirty-three receivers between June 2009 and December 2010. Tagged sharks ranged in size from 60 to 114 cm fork length and were detected between the upper and lower portions of Mobile Bay. Despite a variety of freshwater sources associated with this highly productive estuary, sharks were most consistently detected at the largest input to the system – the Mobile and Tensaw Rivers. Our findings suggest a combination of hydrographic factors interact to influence the distribution of juvenile bull sharks in Mobile Bay. The factors affecting the probability of detecting at least one bull shark varied both temporally (2009 vs 2010) and spatially (upper vs lower bay). Electivity analysis demonstrated that bull sharks showed highest affinity for warm water (29–32°C), moderate salinities (10–11 psu) and normoxic waters (5–7 mg/l), although these patterns were not consistent between regions or across years. We suggest future studies coupling telemetry and hydrographic variables should, when possible, consider the interactions of multiple environmental parameters when defining the dynamic factors explaining the spatial distribution of coastal sharks. 相似文献
13.
14.
Aquatic Ecology - Understanding the movement ecology of marine species is important for conservation management and monitoring their responses to environmental change. In this study, adult and... 相似文献
15.
Bull sharks (Carcharhinus leucas) are globally distributed top predators that play an important ecological role within coastal marine communities. However, little is known about the spatial and temporal scales of their habitat use and associated ecological role. In this study, we employed passive acoustic telemetry to investigate the residency patterns and migration dynamics of 18 adult bull sharks (195–283 cm total length) tagged in southern Mozambique for a period of between 10 and 22 months. The majority of sharks (n = 16) exhibited temporally and spatially variable residency patterns interspersed with migration events. Ten individuals undertook coastal migrations that ranged between 433 and 709 km (mean = 533 km) with eight of these sharks returning to the study site. During migration, individuals exhibited rates of movement between 2 and 59 km.d−1 (mean = 17.58 km.d−1) and were recorded travelling annual distances of between 450 and 3760 km (mean = 1163 km). Migration towards lower latitudes primarily took place in austral spring and winter and there was a significant negative correlation between residency and mean monthly sea temperature at the study site. This suggested that seasonal change is the primary driver behind migration events but further investigation is required to assess how foraging and reproductive activity may influence residency patterns and migration. Results from this study highlight the need for further understanding of bull shark migration dynamics and suggest that effective conservation strategies for this vulnerable species necessitate the incorporation of congruent trans-boundary policies over large spatial scales. 相似文献
16.
Nicole U. Czech-Damal Guido Dehnhardt Paul Manger Wolf Hanke 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2013,199(6):555-563
Passive electroreception is a sensory modality in many aquatic vertebrates, predominantly fishes. Using passive electroreception, the animal can detect and analyze electric fields in its environment. Most electric fields in the environment are of biogenic origin, often produced by prey items. These electric fields can be relatively strong and can be a highly valuable source of information for a predator, as underlined by the fact that electroreception has evolved multiple times independently. The only mammals that possess electroreception are the platypus (Ornithorhynchus anatinus) and the echidnas (Tachyglossidae) from the monotreme order, and, recently discovered, the Guiana dolphin (Sotalia guianensis) from the cetacean order. Here we review the morphology, function and origin of the electroreceptors in the two aquatic species, the platypus and the Guiana dolphin. The morphology shows certain similarities, also similar to ampullary electroreceptors in fishes, that provide cues for the search for electroreceptors in more vertebrate and invertebrate species. The function of these organs appears to be very similar. Both species search for prey animals in low-visibility conditions or while digging in the substrate, and sensory thresholds are within one order of magnitude. The electroreceptors in both species are innervated by the trigeminal nerve. The origin of the accessory structures, however, is completely different; electroreceptors in the platypus have developed from skin glands, in the Guiana dolphin, from the vibrissal system. 相似文献
17.
R. VIMALA DEVI 《The Journal of eukaryotic microbiology》1964,11(3):304-307
SYNOPSIS. Starvation apparently does not induce cannibalism in F. leucas , but the occurrence of infirm, cytolized and helpless individuals in a dish of normal ones seems to afford an opportunity for it. Ingestion of the victim as well as the process of its digestion in the food vacuole of the cannibal is described. The highest number found ingested by a single cannibal is three. Cytoplasm and the micronuclei are digested before the macronucleus. Part of the macronucleus is present in the food vacuole of the cannibal even 16 hours after ingestion of the prey. By 24 hours, digestion is complete. The deoxyribonucleic acid of the macronucleus undergoes some specifiable change in its constitution towards the latter part of its digestion. Cannibalism does not lead to giant formation. 相似文献
18.
W Heiligenberg 《Current opinion in neurobiology》1991,1(2):187-191
Recent studies on electroreception in fish have focused on the structure and function of recurrent descending pathways, efference copy mechanisms, and multiple neuronal maps involved in the processing of sensory information. Studies on a neuronal oscillator have revealed that different neuronal inputs modulate the pattern of oscillations to produce different forms of behavioral output. 相似文献
19.
Eighteen Naegleria strains were isolated from organs of freshwater fishes belonging to 5 species. Morphometric study allowed the separation of the Naegleria strains from the non-vahlkampfiid amoeboflagellates, but was inadequate for species determination. Six strains, representatives of groups that had a slightly different cyst size, were selected and corresponding derived clones were subjected to sequence analysis and riboprinting restriction fragment length polymorphism (RFLP)-PCR analysis of the small subunit (SSU) rRNA genes. One strain isolated from the brain of a fish with systemic infection was characterised by an intronless 2 kb long SSU rRNA gene and was identified as N. australiensis. Another 5 strains had a 1.3 kb long group I intron in their SSU rRNA gene and, based on the SSU rRNA sequences and riboprints, RFLP-PCR patterns appeared in phylogenetic trees to be closely related to Naegleria clarki. 相似文献
20.
New- and old-world tropical electric fish lack a common electrical ancestor, suggesting that the mechanisms of signal generation and recognition evolved independently in the two groups. Recent research on convergent designs for electrogenesis and electroreception has focused on the structure of electric organs, the neural circuitry controlling the pacemaker driving the electric organ, and the neural circuitry underlying time coding of electric waveforms. 相似文献