共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plant immunity. However, roles of NO and ROS in disease resistance to necrotrophic pathogens are not fully understood. We have recently demonstrated that NO plays a pivotal role in basal defense against Botrytis cinerea and the expression of the salicylic acid (SA)-responsive gene PR-1 in Nicotiana benthamiana. By contrast, ROS function negatively in resistance or positively in expansion of disease lesions during B. cinerea-N. benthamiana interaction. Here, analysis in NahG-transgenic N. benthamiana showed that SA signaling is not involved in resistance to B. cinerea in N. benthamiana. We discuss how NO and ROS participate in disease resistance to necrotrophic pathogens on the basis of recent reports.Key words: NO burst, oxidative burst, necrotrophic pathogen, salicylic acid, plant immunity, MAPKNecrotrophs are pathogens that kill host cells by means of toxic molecules and lytic enzymes, and they feed on the remains for their own growth. If the toxic molecule shows differential activity to one or a few plant species, the pathogen has a limited host range and the metabolite is referred to as a host-selective toxin (HST).1 Several well-studied necrotrophs, in particular Cochliobolus and Alternaria spp., produce HSTs required for the pathogenicity. There are also necrotrophic fungal pathogens with a broad host range, particularly those in the order of Helotiales, including Sclerotinia sclerotiorum and Botrytis cinerea.Rapid production of nitric oxide (NO) and reactive oxygen species (ROS), called NO burst and oxidative burst, respectively, is one of the earliest responses of plants to pathogen attacks. Our recent study showed that NO and oxidative bursts accompanied by activation of the mitogen-activated protein kinase (MAPK)2 are induced after inoculation with B. cinerea, and that NO plays a key role, but ROS have an opposite effect in basal defense against B. cinerea in Nicotiana benthamiana.3 NO and ROS are believed to play key roles independently or coordinately in plant innate immunity.4,5 NO signaling comprises complex processes including increases in cytosolic Ca2+ concentration, cyclic GMP (cGMP), cyclic ADP ribose and activation of protein kinases. NO also modulates protein activities directly by cysteine S-nitrosylation.6 In addition, NO appears to act as an antioxidant of ROS, because NO can react quickly with superoxide (O2−) to form peroxynitrite (ONOO−) and then, reduces the amount of endogenous ROS. Actually, treatment with a mammalian NO synthase inhibitor and silencing NbNOA1 decreased endogenous NO levels and increased the levels of ROS after inoculation with B. cinerea.3 The suppression of NO burst induced high susceptibility to B. cinerea, and depletion of oxidative burst by an NADPH oxidase inhibitor or silencing NbRBOHB led to reduction in disease lesions by B. cinerea,3 suggesting that the growth of B. cinerea might be determined by endogenous levels of ROS which is an important component of virulence.7 However, depletion of both NO and oxidative bursts by double silencing NbNOA1/NbRBOHB resulted in expansion of disease lesions compared with reduction of oxidative burst alone by silencing NbRBOHB.3 Similarly, our most recent study showed that silencing NbRibA which compromises production of both NO and ROS do not affect basal resistance against B. cinerea.8 These findings suggest that NO positively functions in resistance to necrotrophic pathogens in the manner other than as an antioxidant of ROS.The relationship between NO and salicylic acid (SA) has been studied.9 SA signaling-deficient mutants of Arabidopsis thaliana show high susceptibility to B. cinerea.10,11 We have suggested that reduced basal defense against B. cinerea in N. benthamiana resulting from compromised endogenous NO production may be due to depletion of SA signaling, because NbNOA1-silenced plants showed suppression of the SA-responsive gene NbPR-1 expression induced by inoculation with B. cinerea.3 To confirm the possibility, we used N. benthamiana expressing NahG that converts all SA to catechol. NahG and non-NahG (WT) leaves were inoculated with B. cinerea. NahG plants showed similar susceptibility to B. cinerea compared with WT plants (Fig. 1). We also evaluated effects of silencing NbNOA1 and NbRBOHB in NahG plants on susceptibility to B. cinerea. Like NbNOA1-silenced WT plants shown previusly,3 NbNOA1-silenced NahG leaves showed high susceptibility to B. cinerea. On the other hand, NbRBOHB-silenced NahG leaves showed marked reduction of disease lesions compared with silencing-control NahG leaves. NbNOA1/NbRBOHB-silenced NahG leaves showed expansion of disease lesions compared with NbRBOHB-silenced NahG leaves (Fig. 2). These results suggest that NO-mediated basal defense against B. cinerea is not due to SA signaling, and effects of ROS on disease lesions may not depend on SA in N. benthamiana.Open in a separate windowFigure 1Effects of NahG transgene on susceptibility to B. cinerea. NahG and non-NahG (WT) leaves were inoculated with B. cinerea conidial suspension (1 × 105 conidia/ml). (A) Inoculated leaves were photographed at 4 days postinoculation (dpi). (B) Average diameter of lesions formed on the leaves at 3 and 4 dpi. Data are means ± SD from fourteen experiments.Open in a separate windowFigure 2Effects of silencing NbNOA1 (N), NbRBOHB (B) or NbNOA1/NbRBOHB (N/B) in NahG plants on susceptibility to B. cinerea. Silenced NahG leaves were inoculated with B. cinerea conidial suspension (1 × 105 conidia/ml). (A) Inoculated leaves were photographed at 4 dpi. (B) Average diameter of lesions formed on the leaves at 3 and 4 dpi. Data are means ± SD from four experiments. Data were subjected to Student''s t-test. *p < 0.05 versus silencing-control plants (TRV). **p < 0.05 versus NbRBOHB-silenced plants.Recently, it has been reported that NO and ROS are involved in HSTs responses.12–15 Victorin, an HST produced by Cochliobolus victoriae, elicits generation of NO and ROS in victorin-sensitive oat leaves.12 Cell death induced by victorin is suppressed by treatment with ROS scavengers.13 Similarly, treatment with ToxA, an HST produced by Pyrenophora triticirepentis, induces oxidative burst, and scavenging ROS compromises ToxA-inducible cell death in ToxA-sensitive wheatleaves.14,15 SA-induced MAPK, which regulates both NO and ROS production,2 is activated by AAL-toxin produced by Alternaria alternata f. sp. lycopersici in AAL-toxin-sensitive tobacco (Mizuno et al. unpublished data). These findings indicate requirement of ROS for the HST-inducible cell death and participation of NO in HST responses.In conclusion, NO and ROS appear to play a contrasting role in disease resistance to necrotrophic pathogens as shown in Figure 3. However, how NO signaling participates in defense responses against necrotrophic pathogens has yet to be elucidated. Recently, several targets of protein S-nitrosylation during hypersensitive response have been characterized in A. thaliana.16 Evidence is also accumulating for cGMP as an important component of NO-related signal transduction.17 Further investigations of NO signaling will lead to our understanding of interactions between plants and necrotrophic pathogens.Open in a separate windowFigure 3Model showing role of NO and oxidative bursts in disease resistance to necrotrophic pathogens. After recognition of necrotrophs, plants immediately provoke activation of MAPK which could regulate production of both NO and ROS,2 and then NO and oxidative bursts. NO burst plays an important role in disease resistance to necrotrophic pathogens, whereas oxidative burst has a negative role in resistance or has a positive role in expansion of disease lesions by necrotrophs. 相似文献
6.
Feng C Tollin G Holliday MA Thomas C Salerno JC Enemark JH Ghosh DK 《Biochemistry》2006,45(20):6354-6362
Intersubunit intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in nitric oxide (NO) synthesis by NO synthase (NOS). Previous crystal structures and functional studies primarily concerned an enzyme conformation, which serves as the input state for reduction of FMN by electrons from NADPH and flavin adenine dinucleotide (FAD) in the reductase domain. To favor the formation of the output state for the subsequent IET from FMN to heme in the oxygenase domain, a novel truncated two-domain oxyFMN construct of rat neuronal NOS (nNOS), in which only the FMN and heme domains were present, was designed and expressed. The kinetics of IET between the FMN and heme domains in the nNOS oxyFMN construct in the presence and absence of added calmodulin (CaM) were directly determined using laser flash photolysis of CO dissociation in comparative studies on partially reduced oxyFMN and single-domain heme oxygenase constructs. The IET rate constant in the presence of CaM (262 s(-)(1)) was increased approximately 10-fold compared to that in the absence of CaM (22 s(-)(1)). The effect of CaM on interdomain interactions was further evidenced by electron paramagnetic resonance (EPR) spectra. This work provides the first direct evidence of the CaM control of electron transfer (ET) between FMN and heme domains through facilitation of the FMN/heme interactions in the output state. Therefore, CaM controls IET between heme and FMN domains by a conformational gated mechanism. This is essential in coupling ET in the reductase domain in NOS with NO synthesis in the oxygenase domain. 相似文献
7.
More than 230,000 children are born in Africa with sickle cell disease (SCD) each year: approximately 85% of all affected births worldwide. Although malaria is commonly viewed as a major problem for African patients with this condition, questions still remain about its relative importance as a cause of ill heath and death. In the absence of definitive studies investigating the contribution of malaria to morbidity and mortality in African children with SCD, policy makers will continue to lack the evidence on which to base appropriate management guidelines. 相似文献
8.
9.
While much research has been directed to harnessing the antimicrobial properties of exogenous NO, the possibility of bacteria developing resistance to such therapy has not been thoroughly studied. Herein, we evaluate potential NO resistance using spontaneous and serial passage mutagenesis assays. Specifically, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa were systematically exposed to NO-releasing 75mol% MPTMS-TEOS nitrosothiol particles at or below minimum inhibitory concentration (MIC) levels. In the spontaneous mutagenesis assay, bacteria that survived exposure to lethal concentrations of NO showed no increase in MIC. Similarly, no increase in MIC was observed in the serial passage mutagenesis assay after exposure of these species to sub-inhibitory concentrations of NO through 20 d. 相似文献
10.
Paulo E. da Costa Wagner L. Batista Miriam S. Moraes Arnold Stern 《Free radical research》2018,52(5):592-604
Tumour progression involves the establishment of tumour metastases at distant sites. Resistance to anoikis, a form of cell death that occurs when cells lose contact with the extracellular matrix and with neighbouring cells, is essential for metastases. NO has been associated with anoikis. NO treated HeLa cells and murine melanoma cells in suspension triggered a nitric oxide (NO)-Src kinase signalling circuitry that enabled resistance to anoikis. Two NO donors, sodium nitroprusside (SNP) (500 µM) and DETANO (125 µM), protected against cell death derived from detachment of a growth permissive surface (experimental anoikis). Under conditions of NO-mediated Src activation the following were observed: (a) down-regulation of the pro-apoptotic proteins Bim and cleaved caspase-3 and the cell surface protein, E-cadherin, (b) up-regulation of caveolin-1, and (c) the dissociation of cell aggregates formed when cells are detached from a growth permissive surface. Efficiency of reattachment of tumour cells in suspension and treated with different concentrations of an NO donor, was dependent on the NO concentration. These findings indicate that NO-activated Src kinase triggers a signalling circuitry that provides resistance to anoikis, and allows for metastases. 相似文献
11.
Podokinesis in endothelial cell migration: role of nitric oxide 总被引:12,自引:0,他引:12
Noiri Eisei; Lee Eugene; Testa Jacqueline; Quigley James; Colflesh David; Keese Charles R.; Giaever Ivar; Goligorsky Michael S. 《American journal of physiology. Cell physiology》1998,274(1):C236
Previously, we demonstrated the role of nitric oxide (NO) intransforming epithelial cells from a stationary to locomoting phenotype[E. Noiri, T. Peresleni, N. Srivastava, P. Weber, W. F. Bahou, N. Peunova, and M. S. Goligorsky. Am. J. Physiol. 270 (CellPhysiol. 39): C794-C802, 1996] and itspermissive function in endothelin-1-stimulated endothelial cellmigration (E. Noiri, Y. Hu, W. F. Bahou, C. Keese, I. Giaever, and M. S. Goligorsky. J. Biol. Chem. 272:1747-1753, 1997). In the present study, the role of functional NOsynthase in executing the vascular endothelial growth factor(VEGF)-guided program of endothelial cell migration and angiogenesiswas studied in two independent experimental settings. First, VEGF,shown to stimulate NO release from simian virus 40-immortalized microvascular endothelial cells, induced endothelial cell transwell migration, whereasNG-nitro-L-arginine methyl ester(L-NAME) or antisenseoligonucleotides to endothelial NO synthase suppressed this effect ofVEGF. Second, in a series of experiments on endothelial cell woundhealing, the rate of VEGF-stimulated cell migration was significantlyblunted by the inhibition of NO synthesis. To gain insight into thepossible mode of NO action, we next addressed the possibility that NOmodulates cell matrix adhesion by performing impedance analysis ofendothelial cell monolayers subjected to NO. The data showed thepresence of spontaneous fluctuations of the resistance in ostensiblystationary endothelial cells. Spontaneous oscillations were induced byNO, which also inhibited cell matrix adhesion. This process we propose to term "podokinesis" to emphasize a scalar form ofmicromotion that, in the presence of guidance cues, e.g., VEGF, istransformed to a vectorial movement. In conclusion, execution of theprogram for directional endothelial cell migration requires twocoexisting messages: NO-induced podokinesis (scalar motion) andguidance cues, e.g., VEGF, which imparts a vectorial component to themovement. Such a requirement for the dual signaling may explain amismatch in the demand and supply with newly formed vessels indifferent pathological states accompanied by the inhibition of NOsynthase. 相似文献
12.
Hyun Jin Chun Hyeong Cheol Park Sung Cheol Koo Ju Huck Lee Chan Young Park Man Soo Choi Chang Ho Kang Dongwon Baek Yong Hwa Cheong Dae-Jin Yun Woo Sik Chung Moo Je Cho Min Chul Kim 《Molecules and cells》2012,34(5):463-471
Nitric oxide (NO) is known for its role in the activation of plant defense responses. To examine the involvement and mode of action of NO in plant defense responses, we introduced calmodulin-dependent mammalian neuronal nitric oxide synthase (nNOS), which controls the CaMV35S promoter, into wild-type and NahG tobacco plants. Constitutive expression of nNOS led to NO production and triggered spontaneous induction of leaf lesions. Transgenic plants accumulated high amounts of H2O2, with catalase activity lower than that in the wild type. nNOS transgenic plants contained high levels of salicylic acid (SA), and they induced an array of SA-, jasmonic acid (JA)-, and/or ethylene (ET)-related genes. Consequently, NahG co-expression blocked the induction of systemic acquired resistance (SAR)-associated genes in transgenic plants, implying SA is involved in NO-mediated induction of SAR genes. The transgenic plants exhibited enhanced resistance to a spectrum of pathogens, including bacteria, fungi, and viruses. Our results suggest a highly ranked regulatory role for NO in SA-, JA-, and/or ET-dependent pathways that lead to disease resistance. 相似文献
13.
Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a worldwide pandemic with few tangible and safe treatment options. Although it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many “distal” causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity—those that directly regulate energy metabolism or caloric intake—seem to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin-resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. 相似文献
14.
Hyduke DR Liao JC 《American journal of physiology. Heart and circulatory physiology》2005,288(5):H2390-H2399
Decreased nitric oxide (NO) bioavailability is associated with a number of pathological conditions. Administration of a supplemental source of NO can counter the pathological effects arising from decreased NO bioavailability. A class of NO-nucleophile adducts that spontaneously release NO (NONOates) has been developed, and its members show promise as therapeutic sources of NO. Because the NONOates release NO spontaneously, a significant portion of the NO may be consumed by the myriad of NO reactive species present in the body. Here we develop a model to analyze the efficacy of NO delivery, by membrane-impermeable NONOates, in the resistance arterioles. Our model identifies three features of blood vessels that will enhance NONOate efficacy: 1) the amount of NO delivered to the abluminal region increases with lumen radius; 2) the presence of a flow-induced red blood cell-free zone will augment NO delivery; and 3) extravasation of the NONOate into the interstitial space will increase abluminal NO delivery. These results suggest that NONOates may be more effective in larger vessels and that NONOate efficacy can be altered by modifying permeability to the interstitial space. 相似文献
15.
A Robinson 《CMAJ》1993,148(9):1481-1485
16.
Myristoylation of endothelial cell nitric oxide synthase is important for extracellular release of nitric oxide 总被引:2,自引:0,他引:2
Tsuyoshi Sakoda Ken-ichi Hirata Ryohei Kuroda Nobuhiko Miki Masakuni Suematsu Seinosuke Kawashima Mitsuhiro Yokoyama 《Molecular and cellular biochemistry》1995,152(2):143-148
Endothelial cell nitric oxide synthase (NOS) is known to have a N-myristoylation consensus sequence. Such a consensus sequence is not evident in the macrophage, smooth muscle and neuronal NOS. A functional role for this N-terminal myristoylation is not clear yet. In the present study, we examined the effect of N-terminal myristoylation on the NOS activity determined by the conversion of L-[3H]arginine to L-[3H]citrulline and extracellular NO release determined by nitrite production in the conditioned medium from the COS-7 cells transfected with wild type bovine aortic endothelial cell (BAEC) NOS cDNA or nonmyristoylated BAEC-NOS mutant cDNA. NOS activity of wild type BAEC-NOS in COS-7 cells was localized in the particulate fraction and that of mutant NOS was in the cytosolic fraction. In contrast, nitrite production from COS-7 cells transfected with wild type BAEC-NOS cDNA was greater than that of mutant cDNA in a time dependent and a concentration dependent manner. These results suggest that membrane localization of NOS with myristoylation facilitates extracellular transport of NO and leads to enhanced NO signaling on the vascular smooth muscle cells and the intravascular blood cells including neutrophils, macrophages and platelets. 相似文献
17.
18.
19.
Singh S Das T Ravindran A Chaturvedi RK Shukla Y Agarwal AK Dikshit M 《Redox report : communications in free radical research》2005,10(2):103-109
The present study was undertaken to explore involvement of nitric oxide (NO) in the experimental models of Parkinson's disease. Neurodegeneration was induced by unilateral injections of 6-hydroxydopamine (6-OHDA) or lipopolysaccharide (LPS) in the right striatum. Lesions were functionally evaluated by amphetamine-induced asymmetrical behaviour and by decrease in the tyrosine hydroxylase (TH) immunostaining. An induction in the expression of iNOS and augmentation in nitrite content was observed in both the models. The extent of increase in iNOS expression was, however, different but the elevation in the nitrite content was comparable in both the models. The increase in iNOS expression inversely correlated with the tyrosine hydroxylase (TH) immunolabeling. Animals pretreated with a NOS inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), exhibited complete protection against amphetamine induced rotations in both the models. Thus, augmented NO availability subsequent to iNOS induction seems to play an important role in the initial phase of neurodegeneration. 相似文献
20.
Park AM Nagata K Sato EF Tamura T Shimono K Inoue M 《Archives of biochemistry and biophysics》2003,411(1):129-135
The aim of the present work is to elucidate the mechanism by which the respiration of Helicobacter pylori but not of Escherichia coli shows a strong resistance to nitric oxide (NO). Nitric oxide strongly but reversibly inhibited the oxygen consumption by sonicated membranes from H. pylori and Triton X-100-treated cells. Although the sensitivity of the H. pylori respiration to cyanide was low, it also increased after the treatment with Triton X-100. Kinetic analyses revealed that NO was rapidly degraded by E. coli and the Triton X-100-treated H. pylori, but not by the intact H. pylori. Thus, the low sensitivity to NO might reflect the low affinity of the cytochrome c oxidase for this radical within the membrane/lipid bilayers of H. pylori. Such properties of the oxidase in H. pylori membranes may, at least in part, underlie the mechanism by which this bacterium thrives in NO-enriched gastric juice. 相似文献