首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Epigenetics》2013,8(5):685-692
Constitutional epigenetic changes detected in blood or non-disease involving tissues have been associated with disease susceptibility. We measured promoter methylation of CDKN2A (p16 and p14ARF) and 13 melanoma-related genes using bisulfite pyrosequencing of blood DNA from 114 cases and 122 controls in 64 melanoma-prone families (26 segregating CDKN2A germline mutations). We also obtained gene expression data for these genes using microarrays from the same blood samples. We observed that CDKN2A epimutation is rare in melanoma families, and therefore is unlikely to cause major susceptibility in families without CDKN2A mutations. Although methylation levels for most gene promoters were very low (<5%), we observed a significantly reduced promoter methylation (odds ratio = 0.63, 95% confidence interval = 0.50, 0.80, P < 0.001) and increased expression (fold change = 1.27, P = 0.048) for TNFRSF10C in melanoma cases. Future research in large prospective studies using both normal and melanoma tissues is required to assess the significance of TNFRSF10C methylation and expression changes in melanoma susceptibility.  相似文献   

2.
Constitutional epigenetic changes detected in blood or non-disease involving tissues have been associated with disease susceptibility. We measured promoter methylation of CDKN2A (p16 and p14ARF) and 13 melanoma-related genes using bisulfite pyrosequencing of blood DNA from 114 cases and 122 controls in 64 melanoma-prone families (26 segregating CDKN2A germline mutations). We also obtained gene expression data for these genes using microarrays from the same blood samples. We observed that CDKN2A epimutation is rare in melanoma families, and therefore is unlikely to cause major susceptibility in families without CDKN2A mutations. Although methylation levels for most gene promoters were very low (<5%), we observed a significantly reduced promoter methylation (odds ratio = 0.63, 95% confidence interval = 0.50, 0.80, P < 0.001) and increased expression (fold change = 1.27, P = 0.048) for TNFRSF10C in melanoma cases. Future research in large prospective studies using both normal and melanoma tissues is required to assess the significance of TNFRSF10C methylation and expression changes in melanoma susceptibility.  相似文献   

3.
Epigenetic inactivation of genes by promoter hypermethylation, a major mechanism in the initiation and progression of tobacco-induced cancer, has also been associated with lung cancer induced through environmental and occupational exposures. Our previous study of gene methylation in workers from the MAYAK nuclear enterprise identified a significantly higher prevalence for methylation of the p16 gene (CDKN2A) in adenocarcinomas from workers compared to tumors from non-worker controls. The purpose of this investigation was to determine whether genes in addition to p16 are "targeted" for silencing and whether overall gene methylation was more common in radiation-induced adenocarcinoma. A significant increase in the prevalence of methylation of GATA5 was seen in tumors from workers compared to tumors from controls. The prevalence for methylation of PAX5 beta and H-cadherin did not differ in tumors from workers and controls. Evaluating the frequency for methylation of a five-gene panel revealed that 93% of adenocarcinomas from workers compared to 66% of tumors from controls were methylated for at least one gene. Moreover, a twofold increase was seen in the number of tumors methylated for three or more genes for tumors from workers compared to controls. Increased frequency for inactivation of genes by promoter hypermethylation and targeting of tumor suppressor genes such as GATA5 may be factors that contribute to the increased risk for lung cancer associated with radiation exposure.  相似文献   

4.
《Epigenetics》2013,8(4):265-269
Recently a mouse model of T/natural killer acute lymphoblastic leukemia was used to assess global promoter methylation across the mouse genome using the restriction landmark genomic scanning technique. One of the methylated mouse genes identified in this way was Slit2. There are three mammalian SLIT genes (SLIT1, SLIT2, SLIT3), that belong to a highly conserved family of axon guidance molecules. We have previously demonstrated that SLIT2 is frequently inactivated in lung, breast, colorectal and glioma tumors by hypermethylation of a CpG island in its promoter region, whilst inactivating somatic mutations are rare. Furthermore, we demonstrated that SLIT2 acts as a tumor suppressor gene in breast and colorectal cancer cells. In this report we determined the methylation status of the SLIT2 gene in leukemias (CLL and ALL). SLIT2 was methylated in all 10 leukemia cell lines analyzed (8 completely and 2 partially methylated). SLIT2 expression was restored after treating ALL lines with 5-aza-2dC. In primary ALL and CLL samples, SLIT2 was also frequently methylated, 58% (30/52) B-ALL; 83% (10/12) T-ALL and in 80% (24/30) CLL. Whilst DNA from peripheral blood and bone marrow from healthy control samples showed no SLIT2 methylation. Methylation results in leukemia cell lines and ALL and CLL primary samples were confirmed by direct sequencing of bisulfite modified DNA. Our results demonstrate that methylation of the SLIT2 5’ CpG island is conserved between mice and humans, and therefore is likely to be of functional importance.  相似文献   

5.
Purpose: Promoter hypermethylation of tumor suppressor genes may serve as a promising biomarker for the diagnosis of cancer. Cell-free circulating DNA (cf-DNA) shares hypermethylation status with primary tumors. This study investigated promoter hypermethylation of five tumor suppressor genes as markers in the detection of nasopharyngeal carcinoma (NPC) in serum samples. Methods: cf-DNA was extracted from serum collected from 40 NPC patients and 41 age- and sex-matched healthy subjects. The promoter hypermethylation status of the five genes (RASSF1, CDKN2A, DLEC1, DAPK1 and UCHL1) was assessed by methylation-specific PCR after sodium bisulfite conversion. Differences in the methylation status of these five genes between NPC patients and healthy subjects were compared. Results: The concentration of cf-DNA in the serum of NPC patients was significantly higher than that in normal controls. The five tumor suppressor genes – RASSF1, CDKN2A, DLEC1, DAPK1 and UCHL1 – were found to be methylated in 17.5%, 22.5%, 25.0%, 51.4% and 64.9% of patients, respectively. The combination of four-gene marker – CDKN2A, DLEC1, DAPK1 and UCHL1 – had the highest sensitivity and specificity in predicting NPC. Conclusion: Screening DNA hypermethylation of tumor suppressor genes in serum was a promising approach for the diagnosis of NPC.  相似文献   

6.
7.
8.
9.
10.
BackgroundReversibility of aberrant methylation via pharmacological means is an attractive target for therapies through epigenetic reprogramming. To establish that pharmacologic reversal of methylation could result in functional inhibition of angiogenesis, we undertook in vitro and in vivo studies of thrombospondin-1 (TSP1), a known inhibitor of angiogenesis. TSP1 is methylated in several malignancies, and can inhibit angiogenesis in melanoma xenografts. We analyzed effects of 5-Aza-deoxycytidine (5-Aza-dC) on melanoma cells in vitro to confirm reversal of promoter hypermethylation and restoration of TSP1 expression. We then investigated the effects of TSP1 expression on new blood vessel formation and tumor growth in vivo. Finally, to determine potential for clinical translation, the methylation status of TSP1 promoter regions of nevi and melanoma tissues was investigated.Results5-Aza-dC reduced DNA (cytosine-5)-methyltransferase 1 (DNMT1) protein, reversed promoter hypermethylation, and restored TSP1 expression in five melanoma cell lines, while having no effect on TSP1 protein levels in normal human melanocytes. In in vivo neovascularization studies, mice were implanted with melanoma cells (A375) either untreated or treated with 5Aza-dC. Vessels at tumor sites were counted by an observer blinded to treatments and the number of tumor vessels was significantly decreased at pretreated tumor sites. This difference occurred before a significant difference in tumor volumes was seen, yet in further studies the average tumor volume in mice treated in vivo with 5-Aza-dC was decreased by 55% compared to untreated controls. Knockdown of TSP1 expression with shRNA enhanced tumor-induced angiogenesis by 68%. Analyses of promoter methylation status of TSP1 in tumors derived from untreated and treated mice identified 67% of tumors from untreated and 17% of tumors from treated mice with partial methylation consistent with the methylation specific PCR analysis of A375 cells. Examination of methylation patterns in the promoter of TSP1 and comparison of aberrantly methylated TSP1 in melanoma with non-malignant nevi identified a significantly higher frequency of promoter methylation in tumor samples from melanoma patients.ConclusionsPharmacological reversal of methylation silenced TSP1 had functional biological consequences in enhancing angiogenesis inhibition and inducing antitumor effects to decrease murine melanoma growth. Angiogenesis inhibition is an additional mechanism by which epigenetic modulators can have antitumor effects.  相似文献   

11.
Yu J  Zhang HY  Ma ZZ  Lu W  Wang YF  Zhu JD 《Cell research》2003,13(5):319-333
To determine the possible role of the epigenetic mechanisms in carcinogenesis of the hepatocellular carcinoma, we methylation-profiled the promoter CpG islands of twenty four genes both in HCC tumors and the neighboring non-cancerous tissues of twenty eight patients using the methylation-specific PCR (MSP) method in conjunction with the DNA sequencing. In comparison with the normal liver tissues from the healthy donors, it was found thatwhile remained unmethylated the ABL, CAV, EPO, GATA3, LKB 1, NEP, NFL, NIS and p27KIPI genes, varying extents of the HCC specific loss of the epigenetisoermethvlation were found associated with the ABO, AR. CSPG2. cvclin al. DBCCR1,GALR2, IRF7, MGMT, MT 1 A, MYOD 1, OCT6, p57KP2, p73, WT 1 genes, and demethylation with the MAGEA 1 gene, respectively. Judged by whether the hypermethylated occurred in HCC more rrequenuy man in tneir neignboring normal tissues, the hypermethylation status of the AR, DBCCR1, IRF7, OCT6, and p73 genes was considered as the event specific to the late stage, while that the rest that lacked such a distinguished contrast, as the event specific to the early stage of HCC carcinogenesis. Among all the clinical pathological parameters tested for theassociation with, the hypermethylation of the cyclin al gene was more prevalent in the non-cirrhosis group (P=0.02 1) while the hvoermethvlated p16^INK4a gene was more common in the cirrhosis group (P=0.017). The concordant dant methylation behaviors of nineteen genes, including the four previously studied and their association With clrrllosis has been evaluated by the best subgroup selection method. The data presented in this report would enable us toshape our understanding of the mechanisms for the HCC specific loss of the epigenetic stability of the genome, aswell as the strategy of developing the novel robust methylation based diagnostic and prognostic tools.  相似文献   

12.
To escape the immune system, tumor cells may remove surface molecules such as the major histocompatibility complex (MHC) and co-stimulatory molecules, which are essential for recognition by lymphocytes. Down-regulation of the co-stimulatory molecules CD70 (TNFSF7) and CD80 may contribute to tumor cell survival; however, the mechanism of down-regulation of the TNFSF7 gene during tumorigenesis is poorly understood. Here we present evidence indicating that TNFSF7 gene expression is epigenetically down-regulated via DNA hypermethylation within its promoter region during progression in breast cancer cells in the isogenic MCF10 model. Bisulfite sequencing revealed that the CpG pairs at the proximal region of the TNFSF7 promoter are heavily methylated during progression of breast cancer cells but that methylation of the more distal sequences was not changed considerably. Thus, this epigenetic silencing of the TNFSF7 gene via hypermethylation of its proximal region may allow the benign and invasive MCF10 variants to escape immune surveillance.  相似文献   

13.
14.
Promoter DNA hypermethylation with gene silencing is a common feature of human cancer, and cancer-prone methylation is believed to be a landmark of tumor suppressor genes (TSG). Identification of novel methylated genes would not only aid in the development of tumor markers but also elucidate the biological behavior of human cancers. We identified several epigenetically silenced candidate TSGs by pharmacologic unmasking of esophageal squamous cell carcinoma (ESCC) cell lines by demethylating agents (5-aza-2'-deoxycitidine and trichostatin A) combined with ESCC expression profiles using expression microarray. HOP/OB1/NECC1 was identified as an epigenetically silenced candidate TSG and further examined for (a) expression status, (b) methylation status, and (c) functional involvement in cancer cell lines. (a) The HOP gene encodes two putative promoters (promoters A and B) associated with two open reading frames (HOPalpha and HOPbeta, respectively), and HOPalpha and HOPbeta were both down-regulated in ESCC independently. (b) Promoter B harbors dense CpG islands, in which we found dense methylation in a cancer-prone manner (55% in tumor tissues by TaqMan methylation-specific PCR), whereas promoter A does not harbor CpG islands. HOPbeta silencing was associated with DNA methylation of promoter B in nine ESCC cell lines tested, and reactivated by optimal conditions of demethylating agents, whereas HOPalpha silencing was not reactivated by such treatments. Forced expression of HOP suppressed tumorigenesis in soft agar in four different squamous cell carcinoma cell lines. More convincingly, RNA interference knockdown of HOP in TE2 cells showed drastic restoration of the oncogenic phenotype. In conclusion, HOP is a putative TSG that harbors tumor inhibitory activity, and we for the first time showed that the final shutdown process of HOP expression is linked to promoter DNA hypermethylation under the double control of the discrete promoter regions in cancer.  相似文献   

15.
白细胞介素-10(interleukin-10,IL-10)是在类风湿性关节炎中发挥重要免疫调节作用的细胞因子,其基因失活与已分化的Th1和Th2细胞染色质结构重塑有关。为了探讨IL-10基因启动子甲基化及基因失活在类风湿性关节炎(Rheumatoid Arthritis,RA)发病和进展中的作用,采用逆转录聚合酶链反应(RT-PCR)、酶联免疫吸附实验(enzyme linked immunosorbent assay,ELISA)及甲基化特异性聚合酶链反应(MSP), 分别检测34例类风湿性关节炎患者和30例健康人外周血单个核细胞 IL-10 mRNA、蛋白表达水平及基因启动子甲基化状态。结果显示,病例组IL-10 mRNA及蛋白表达均低于健康对照组,无统计学差异(P>0.05)。病例组甲基化率(85.29%)高于健康对照组(43.33%), 具有统计学差异(x2 =12.439,P=0.000)。IL-10基因启动子甲基化状态与其mRNA表达呈显著负相关(r=-0.579, P=0.001), 与所累关节数显著相关,但与血沉(ESR)、C反应蛋白(CRP)、类风湿因子(RF)、年龄均无相关性(P>0.05)。IL-10 mRNA表达与年龄、所累关节数、ESR、CRP及RF均无相关性(P>0.05)。上述结果提示,启动子甲基化可能是IL-10基因失活的重要机制,IL-10基因异常高甲基化状态可能参与了RA的发生发展。  相似文献   

16.
17.
Melanoma is one of the most common skin cancer that is characterized by rapid growth, early metastasis, high malignant, and mortality. Accumulating evidence demonstrated that promoter methylation of tumor-suppressor genes is implicated in the pathogenesis of melanoma. In the current study, we performed a meta-analysis to identify promising methylation biomarkers in the diagnosis of melanoma. We carried out a systematic literature search using Pubmed, Embase, and ISI web knowledge database and found that gene promoter methylation of 50 genes was reported to be associated with the risk of melanoma. Meta-analysis revealed that hypermethylation of claudin 11 (CLDN11; odds ratio [OR], 16.82; 95% confidence interval [CI], 1.97–143.29; p = 0.010), O-6-methylguanine-DNA methyltransferase (MGMT; OR, 5.59; 95% CI, 2.51–12.47; p < 0.0001), cyclin-dependent kinase inhibitor 2A (p16; OR, 6.57; 95% CI, 2.19–19.75; p = 0.0008), retinoic acid receptor β (RAR-β2; OR, 24.31; 95% CI, 4.58–129.01; p = 0.0002), and Ras association domain family member (RASSF1A; OR, 9.35; 95% CI, 4.73–18.45; p < 0.00001) was significantly higher in melanoma patients compared with controls. CLDN11 (OR, 14.52; 95% CI, 1.84–114.55; p = 0.01), MGMT (OR, 8.08; 95% CI, 1.84–35.46; p = 0.006), p16 (OR, 9.44; 95% CI, 2.68–33.29; p = 0.0005), and RASSF1A (OR, 7.72; 95% CI, 1.05–56.50; p = 0.04) hypermethylation was significantly increased in primary melanoma compared with controls. Methylation frequency of CLDN11 (OR, 25.56; 95% CI, 2.32–281.66; p = 0.008), MGMT (OR, 4.64; 95% CI, 1.98–10.90; p = 0.0004), p16 (OR, 4.31; 95% CI, 1.33–13.96; p = 0.01), and RASSF1A (OR, 10.10; 95% CI, 2.87–35.54; p = 0.0003) was significantly higher in metastasis melanoma compared with controls. These findings indicated that CLDN11, MGMT, p16, RAR-β2, and RASSF1A hypermethylation is a risk factor and a potential biomarker for melanoma. CLDN11, MGMT, p16, and RASSF1A promoter methylation may take part in the development of melanoma and become useful biomarkers in the early diagnosis of the disease.  相似文献   

18.
The current prostate special antigen (PSA) test causes the overtreatment of indolent prostate cancer (PCa). It also increases the risk of delayed treatment of aggressive PCa. DNA methylation aberrations are important events for gene expression dysregulation during tumorigenesis and have been suggested as novel candidate biomarkers for PCa. This may improve the diagnosis and prognosis of PCa. This study assessed the differential methylation and messenger RNA (mRNA) expression between normal and PCa samples. Correlation between promoter methylation and mRNA expression was estimated using Pearson's correlation coefficients. Moreover, the diagnostic potential of candidate methylation markers was estimated by the receiver operating characteristic (ROC) curve using continuous beta values. Survival and Cox analysis was performed to evaluate the prognostic potential of the candidate methylation markers. A total of 359 hypermethylated sites 3435 hypomethylation sites, 483 upregulated genes, and 1341 downregulated genes were identified from The Cancer Genome Atlas database. Furthermore, 17 hypermethylated sites (covering 13 genes), including known genes associated with hypermethylation in PCa (e.g., AOX1 and C1orf114), showed high discrimination between adjacent normal tissues and PCa samples with the area under the ROC curve from 0.88 to 0.94. Notably, ANXA2, FGFR2, HAAO, and KCNE3 were identified as valuable prognostic markers of PCa through the Kaplan–Meier analysis. Using gene methylation as a continuous variable, four promoter hypermethylation was significantly associated with disease-free survival in univariate Cox regression and multivariate Cox regression. This study identified four novel diagnostic and prognostic markers for PCa. The markers provide important strategies for improving the timely diagnosis and prognosis of PCa.  相似文献   

19.
20.
Many differentially methylated genes have been identified in prostate cancer (PCa), primarily using candidate gene-based assays. Recently, several global DNA methylation profiles have been reported in PCa, however, each of these has weaknesses in terms of ability to observe global DNA methylation alterations in PCa. We hypothesize that there remains unidentified aberrant DNA methylation in PCa, which may be identified using higher resolution assay methods. We used the newly developed Illumina HumanMethylation450 BeadChip in PCa (n = 19) and adjacent normal tissues (n = 4) and combined these with gene expression data for identifying new DNA methylation that may have functional consequences in PCa development and progression. We also confirmed our methylation results in an independent data set. Two aberrant DNA methylation genes were validated among an additional 56 PCa samples and 55 adjacent normal tissues. A total 28,735 CpG sites showed significant differences in DNA methylation (FDR adjusted P<0.05), defined as a mean methylation difference of at least 20% between PCa and normal samples. Furthermore, a total of 122 genes had more than one differentially methylated CpG site in their promoter region and a gene expression pattern that was inverse to the direction of change in DNA methylation (e.g. decreased expression with increased methylation, and vice-versa). Aberrant DNA methylation of two genes, AOX1 and SPON2, were confirmed via bisulfate sequencing, with most of the respective CpG sites showing significant differences between tumor samples and normal tissues. The AOX1 promoter region showed hypermethylation in 92.6% of 54 tested PCa samples in contrast to only three out of 53 tested normal tissues. This study used a new BeadChip combined with gene expression data in PCa to identify novel differentially methylated CpG sites located within genes. The newly identified differentially methylated genes may be used as biomarkers for PCa diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号