首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Assembly of Rubisco from native subunits   总被引:2,自引:0,他引:2  
  相似文献   

2.
Antisense RNA inhibition of Rubisco activase expression   总被引:7,自引:0,他引:7  
Ribulose bisphosphate carboxylase (Rubisco) activase catalyzes the activation of Rubisco in vivo. Activase antisense DNA mutants of tobacco have been generated to explore the control that activase exerts on the photosynthetic process. These mutants have up to 90% reductions in activase protein levels as a consequence of an inhibition of activase mRNA accumulation. It is shown that photosynthesis, measured as the rate of CO2 exchange (CER), is modestly decreased in plants exposed to high irradiances. The decreases in CER in the transgenic plants are accompanied by corresponding decreases in Rubisco activation, indicating that activase has a direct effect on photosynthetic rates in the antisense plants by influencing the activation state of Rubisco. It is concluded that in high light conditions, control of photosynthesis is largely shared between Rubisco and activase. Plant growth is also impaired in mutant plants that have severe reductions in activase. The inhibition of activase in the antisense plants does not have an impact on the accumulation of Rubisco large subunit or small subunit mRNAs or proteins. This indicates that the concerted expression of the genes for activase (Rca) and Rubisco (rbcL and rbcS) in response to light, developmental factors and circadian controls is not due to feedback regulation of rbcL or rbcS by the amount of activase protein.  相似文献   

3.
Many C4 plants, including maize, perform poorly under chilling conditions. This phenomenon has been linked in part to decreased Rubisco abundance at lower temperatures. An exception to this is chilling‐tolerant Miscanthus, which is able to maintain Rubisco protein content under such conditions. The goal of this study was to investigate whether increasing Rubisco content in maize could improve performance during or following chilling stress. Here, we demonstrate that transgenic lines overexpressing Rubisco large and small subunits and the Rubisco assembly factor RAF1 (RAF1‐LSSS), which have increased Rubisco content and growth under control conditions, maintain increased Rubisco content and growth during chilling stress. RAF1‐LSSS plants exhibited 12% higher CO2 assimilation relative to nontransgenic controls under control growth conditions, and a 17% differential after 2 weeks of chilling stress, although assimilation rates of all genotypes were ~50% lower in chilling conditions. Chlorophyll fluorescence measurements showed RAF1‐LSSS and WT plants had similar rates of photochemical quenching during chilling, suggesting Rubisco may not be the primary limiting factor that leads to poor performance in maize under chilling conditions. In contrast, RAF1‐LSSS had improved photochemical quenching before and after chilling stress, suggesting that increased Rubisco may help plants recover faster from chilling conditions. Relatively increased leaf area, dry weight and plant height observed before chilling in RAF1‐LSSS were also maintained during chilling. Together, these results demonstrate that an increase in Rubisco content allows maize plants to better cope with chilling stress and also improves their subsequent recovery, yet additional modifications are required to engineer chilling tolerance in maize.  相似文献   

4.
During the past few years the investigations concerning Rubisco and the changes of its activity and properties at elevated temperature were reconsidered with special reference to the important role of Rubisco activase and Rubisco binding protein. The major changes in Rubisco, Rubisco activase and Rubisco binding protein reported recently are presented in this review. New information on these proteins, including their changes under heat stress conditions, is discussed together with open questions.  相似文献   

5.
Jin SH  Hong J  Li XQ  Jiang DA 《Annals of botany》2006,97(5):739-744
BACKGROUND AND AIMS: Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (RCA) is a nuclear-encoded chloroplast protein that modifies the conformation of Rubisco, releases inhibitors from active sites, and increases enzymatic activity. It appears to have other functions, e.g. in gibberellin signalling and as a molecular chaperone, which are related to its distribution within the chloroplast. The aim of this research was to resolve uncertainty about the localization of RCA, and to determine whether the distributions of Rubisco and RCA were altered when RCA content was reduced. The monocotyledon, Oryza sativa was used as a model species. METHODS: Gas exchange and Rubisco were measured, and the sub-cellular locations of Rubisco and RCA were determined using immunogold-labelling electron microscopy, in wild-type and antisense rca rice plants. KEY RESULTS: In antisense rca plants, net photosynthetic rate and the initial Rubisco activity decreased much less than RCA content. Immunocytolocalization showed that Rubisco in wild-type and antisense plants was localized in the stroma of chloroplasts. However, the amount of Rubisco in the antisense rca plants was greater than in the wild-type plants. RCA was detected in both the chloroplast stroma and in the thylakoid membranes of wild-type plants. The percentage of RCA labelling in the thylakoid membrane was shown to be substantially decreased, while the fraction in the stroma was increased, by the antisense rca treatment. CONCLUSIONS: From the changes in RCA distribution and alterations in Rubisco activity, RCA in the stroma of the chloroplast probably contributes to the activation of Rubisco, and RCA in thylakoids compensates for the reduction of RCA in the stroma, allowing steady-state photosynthesis to be maintained when RCA is depleted. RCA may also have a second role in protecting membranes against environmental stresses as a chaperone.  相似文献   

6.
7.
Regulation of Rubisco activase and its interaction with Rubisco   总被引:2,自引:0,他引:2  
The large, alpha-isoform of Rubisco activase confers redox regulation of the ATP/ADP response of the ATP hydrolysis and Rubisco activation activities of the multimeric activase holoenzyme complex. The alpha-isoform has a C-terminal extension that contains the redox-sensitive cysteine residues and is characterized by a high content of acidic residues. Cross-linking and site-directed mutagenesis studies of the C-terminal extension that have provided new insights into the mechanism of redox regulation are reviewed. Also reviewed are new details about the interaction between activase and Rubisco and the likely mechanism of 'activation' that resulted from mutagenesis in a 'Sensor 2' domain of activase that AAA(+) proteins often use for substrate recognition. Two activase residues in this domain were identified that are involved in Rubisco recognition. The results directly complement earlier studies that identified critical residues for activase recognition in the large subunit of Rubisco.  相似文献   

8.
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) plays a critical role in sustaining life by catalysis of carbon fixation in the Calvin–Benson pathway. Incomplete knowledge of the assembly pathway of chloroplast Rubisco has hampered efforts to fully delineate the enzyme's properties, or seek improved catalytic characteristics via directed evolution. Here we report that a Mu transposon insertion in the Zea mays (maize) gene encoding a chloroplast dimerization co‐factor of hepatocyte nuclear factor 1 (DCoH)/pterin‐4α‐carbinolamine dehydratases (PCD)‐like protein is the causative mutation in a seedling‐lethal, Rubisco‐deficient mutant named Rubisco accumulation factor 2 (raf21). In raf2 mutants newly synthesized Rubisco large subunit accumulates in a high‐molecular weight complex, the formation of which requires a specific chaperonin 60‐kDa isoform. Analogous observations had been made previously with maize mutants lacking the Rubisco biogenesis proteins RAF1 and BSD2. Chemical cross‐linking of maize leaves followed by immunoprecipitation with antibodies to RAF2, RAF1 or BSD2 demonstrated co‐immunoprecipitation of each with Rubisco small subunit, and to a lesser extent, co‐immunoprecipitation with Rubisco large subunit. We propose that RAF2, RAF1 and BSD2 form transient complexes with the Rubisco small subunit, which in turn assembles with the large subunit as it is released from chaperonins.  相似文献   

9.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)is methylated at the alpha-amino group of the N-terminal methionine of the processed form of the small subunit (SS), and at the epsilon-amino group of lysine-14 of the large subunit (LS) in some species. The Rubisco LS methyltransferase (LSMT) gene has been cloned and expressed from pea and specifically methylates lysine-14 of the LS of Rubisco. We determine here that both pea and tobacco Rubisco LSMT also exhibit (alpha)N-methyltransferase activity toward the SS of Rubisco, suggesting that a single gene product can produce a bifunctional protein methyltransferase capable of catalyzing both (alpha)N-methylation of the SS and (epsilon)N-methylation of the LS. A homologue of the Rubisco LSMT gene (rbcMT-S) has also been identified in spinach that is closely related to Rubisco LSMT sequences from pea and tobacco. Two mRNAs are produced from rbcMT-S, and both long and short forms of the spinach cDNAs were expressed in Escherichia coli cells and shown to catalyze methylation of the alpha-amino group of the N-terminal methionine of the SS of Rubisco. Thus, the absence of lysine-14 methylation in species like spinach is apparently a consequence of a monofunctional protein methyltransferase incapable of methylating Lys-14, with activity limited to methylation of the SS.  相似文献   

10.
To function, the catalytic sites of Rubisco (EC 4.1.1.39) need to be activated by the reversible carbamylation of a lysine residue within the sites followed by rapid binding of magnesium. The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. This enzyme is thought to aid the release of sugar phosphate inhibitors from Rubisco's catalytic sites, thereby influencing carbamylation. In C3 species, Rubisco operates in a low CO2 environment, which is suboptimal for both catalysis and carbamylation. In C4 plants, Rubisco is located in the bundle sheath cells and operates in a high CO2 atmosphere close to saturation. To explore the role of Rubisco activase in C4 photosynthesis, activase levels were reduced in Flaveria bidentis, a C4 dicot, by transformation with an antisense gene directed against the mRNA for Rubisco activase. Four primary transformants with very low activase levels were recovered. These plants and several of their segregating T1 progeny required high CO2 (>1 kPa) for growth. They had very low CO2 assimilation rates at high light and ambient CO2, and only 10% to 15% of Rubisco sites were carbamylated at both ambient and very high CO2. The amount of Rubisco was similar to that of wild-type plants. Experiments with the T1 progeny of these four primary transformants showed that CO2 assimilation rate and Rubisco carbamylation were severely reduced in plants with less than 30% of wild-type levels of activase. We conclude that activase activity is essential for the operation of the C4 photosynthetic pathway.  相似文献   

11.
The present study characterizes the kinetic properties of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) from 28 terrestrial plant species, representing different phylogenetic lineages, environmental adaptations and photosynthetic mechanisms. Our findings confirm that past atmospheric CO2/O2 ratio changes and present environmental pressures have influenced Rubisco kinetics. One evolutionary adaptation to a decreasing atmospheric CO2/O2 ratio has been an increase in the affinity of Rubisco for CO2 (Kc falling), and a consequent decrease in the velocity of carboxylation (kcatc), which in turn has been ameliorated by an increase in the proportion of leaf protein accounted by Rubisco. The trade‐off between Kc and kcatc was not universal among the species studied and deviations from this relationship occur in extant forms of Rubisco. In species adapted to particular environments, including carnivorous plants, crassulacean acid metabolism species and C3 plants from aquatic and arid habitats, Rubisco has evolved towards increased efficiency, as demonstrated by a higher kcatc/Kc ratio. This variability in kinetics was related to the amino acid sequence of the Rubisco large subunit. Phylogenetic analysis identified 13 residues under positive selection during evolution towards specific Rubisco kinetic parameters. This crucial information provides candidate amino acid replacements, which could be implemented to optimize crop photosynthesis under a range of environmental conditions.  相似文献   

12.
In early biological evolution anoxygenic photosynthetic bacteria may have been established through the acquisition of ribulose bisphosphate carboxylase-oxygenase (Rubisco). The establishment of cyanobacteria may have followed and led to the production of atmospheric oxygen. It has been postulated that a unicellular cyanobacterium evolved to cyanelles which were evolutionary precursors of chloroplasts of both green and non-green algae. The latter probably diverged from ancestors of green algae as evidenced by the occurrence of large (L) and small (S) subunit genes for Rubisco in the chloroplast genome of the chromophytic algae Olisthodiscus luteus. In contrast, the gene for the S subunit was integrated into the nucleus in the evolution of green algae and higher plants. The evolutionary advantages of this integration are uncertain because the function of S subunits is unknown. Recently, two forms of Rubisco (L8 and L8S8) of almost equivalent carboxylase and oxygenase activity have been isolated from the photosynthetic bacterium Chromatium vinosum. This observation perpetuates the enigma of S subunit function. Current breakthroughs are imminent, however, in our understanding of the function of catalytic L subunits because of the application of deoxyoligonucleotide-directed mutagenesis. Especially interesting mutated Rubisco molecules may have either enhanced carboxylase activity or higher carboxylase:oxygenase ratios. Tests of expression, however, must await the insertion of modified genes into the nucleus and chloroplasts. Methodology to accomplish chloroplast transformation is as yet unavailable. Recently, we have obtained the first transformation of cyanobacteria by a colE1 plasmid. We regard this transformation as an appropriate model for chloroplast transformation.  相似文献   

13.
Following an increase in photon flux density (PFD), ribulose bisphosphate carboxylase/oxygenase (Rubisco) undergoes a slow activation which substantially limits the rate of photosynthesis. This activation process is mediated in part by Rubisco activase. Antisense DNA plants of tobacco were used to quantify the degree to which activase limits Rubisco activation. Reductions in leaf activase content caused proportional reductions in the rate of Rubisco activation following a PFD increase from 110 to 1200 micromol m(-2) sec(-1). This was the case for activase levels up to and slightly beyond normal wild-type activase levels. Activase therefore has a flux control coefficient of unity with respect to the Rubisco activation flux. Such a high control coefficient has rarely been measured for any metabolic system, and this is the highest control coefficient measured for an important photosynthetic flux. In contrast, the rate of Rubisco inactivation in leaves following a drop in PFD of 1200 to 110 micromol m(-2) sec(-1) was unchanged by a 60% reduction in activase levels. Despite the high degree of control that activase exerts over the rate of activation, and thus non-steady-state photosynthesis, it was shown that steady-state photosynthesis was largely unaffected by activase concentration until it was reduced below approximately 15% of the wild-type level. The significance of these results and their implications for published models of Rubisco activation are discussed.  相似文献   

14.
Structural studies of Rubisco from tobacco   总被引:2,自引:0,他引:2  
An electron density map of ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco) from tobacco (Nicotiana tabacum) has been obtained by X-ray crystallography at a nominal resolution of 0.34 nm. Phases were determined by multiple isomorphous replacement with three heavy atom derivatives and then refined by solvent flattening. Rubisco is barrel-shaped, and has (422) symmetry. The fourfold axis runs down an open central channel, concentric with the barrel. The molecule measures 10.5 nm along the fourfold axis, and has a diameter of 13 nm perpendicular to the fourfold axis at the widest point. The diameter of the central channel is 2.8 nm at the centre of the molecule, and 0.6 nm at its narrowest constriction. Portions of the polypeptide backbone of the promoter have been traced and some 127 residues have been assigned to 14 alpha-helices. The amino acid sequences of Rubisco from Rhodospirillum rubrum and from the large subunit of tobacco are sufficiently similar to suggest that the two chains are folded in the same general way.  相似文献   

15.
16.
The discovery of the CO(2)-fixing enzyme Rubisco in the Archaebacteria has presented a conundrum in that they apparently lack the gene for phosphoribulokinase, which is required to generate Rubisco's substrate ribulose 1,5-bisphosphate (RuBP). However, two groups have now demonstrated novel RuBP synthesis pathways, demystifying Rubisco's non-autotrophic and perhaps ancient role. A new CO(2) fixing role for Rubisco, which is distinct from the globally dominant Calvin cycle, is providing important clues furthering our understanding of the evolution of autotrophy. This perspective is strengthened by the additional recognition in this commentary that some Rubisco-containing Archaea do also contain PRK and may represent an interesting autotrophic evolutionary transition. Supplementary material for this article can be found on the BioEssays website (http://www.interscience.wiley.com/jpages/0265-9247/suppmat/index.html).  相似文献   

17.
Treatment of purified Rubisco with agents that specifically oxidize cysteine-thiol groups causes catalytic inactivation and increased proteolytic sensitivity of the enzyme. It has been suggested that these redox properties may sustain a mechanism of regulating Rubisco activity and turnover during senescence or stress. Current research efforts are addressing the structural basis of the redox modulation of Rubisco and the identification of critical cysteines. Redox shifts result in Rubisco conformational changes as revealed by the alteration of its proteolytic fragmentation pattern upon oxidation. In particular, the augmented susceptibility of Rubisco to proteases is due to increased exposure of a small loop (between Ser61 and Thr68) when oxidized. Progressive oxidation of Rubisco cysteines using disulphide/thiol mixtures at different ratios have shown that inactivation occurs under milder oxidative conditions than proteolytic sensitization, suggesting the involvement of different critical cysteines. Site-directed mutagenesis of conserved cysteines in the Chlamydomonas reinhardtii Rubisco identified Cys449 and Cys459 among those involved in oxidative inactivation, and Cys172 and Cys192 as the specific target for arsenite. The physiological importance of Rubisco redox regulation is supported by the in vivo response of the cysteine mutants to stress conditions. Substitution of Cys172 caused a pronounced delay in stress-induced Rubisco degradation, while the replacement of the functionally redundant Cys449-Cys459 pair resulted in an enhanced catabolism with a faster high-molecular weight polymerization and translocation to membranes. These results suggest that several cysteines contribute to a sequence of conformational changes that trigger the different stages of Rubisco catabolism under increasing oxidative conditions.  相似文献   

18.
Protease activities and its relation to the contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase were investigated in detached leaves of rice (Oryza sativa L.) floated on the solutions containing abscisic acid (ABA) or benzyladenine (BA). Rubisco and Rubisco activase contents were decreased during the time course and the decreases were enhanced by ABA and suppressed by BA. The decrease in Rubisco activase was faster than that in Rubisco. SDS-dependent protease activities at 50–70 kDa (rice SDS-dependent protease: RSP) analyzed by the gelatin containing PAGE were significantly enhanced by ABA. RSPs were also increased in attached leaves during senescence. RSPs had the pH optimum of 5.5, suggesting that RSPs are vacuolar protease. Both decrease in Rubisco and Rubisco activase contents and increase in RSPs activities were suppressed by cycloheximide. These findings indicate that the activities of RSPs are well correlated with the decrease in these protein contents. Immunoblotting analysis showed that Rubisco in the leaf extracts was completely degraded by 5 h at pH 5.5 with SDS where it was optimal condition for RSPs. However, the degradation of Rubisco did not proceed at pH 7.5 without SDS where it is near physiological condition for stromal proteins. Rubisco activase was degraded at similar rate under both conditions. These results suggest that RSPs can functions in a senescence related degradation system of chloroplast protein in rice leaves. Rubisco activase would be more susceptible to proteolysis than Rubisco under physiological condition and this could affect the contents of these proteins in leaves.  相似文献   

19.
Genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were cloned from dinoflagellate symbionts (Symbiodinium spp) of the giant clam Tridacna gigas and characterized. Strikingly, Symbiodinium Rubisco is completely different from other eukaryotic (form I) Rubiscos: it is a form II enzyme that is approximately 65% identical to Rubisco from Rhodospirillum rubrum (Rubisco forms I and II are approximately 25 to 30% identical); it is nuclear encoded by a multigene family; and the predominantly expressed Rubisco is encoded as a precursor polyprotein. One clone appears to contain a predominantly expressed Rubisco locus (rbcA), as determined by RNA gel blot analysis of Symbiodinium RNA and sequencing of purified Rubisco protein. Another contains an enigmatic locus (rbcG) that exhibits an unprecedented pattern of amino acid replacement but does not appear to be a pseudogene. The expression of rbcG has not been analyzed; it was detected only in the minor of two taxa of Symbiodinium that occur together in T. gigas. This study confirms and describes a previously unrecognized branch of Rubisco's evolution: a eukaryotic form II enzyme that participates in oxygenic photosynthesis and is encoded by a diverse, nuclear multigene family.  相似文献   

20.
Manipulation of Rubisco: the amount,activity, function and regulation   总被引:17,自引:0,他引:17  
Genetic modification to increase the specificity of Rubisco for CO(2) relative to O(2) and to increase the catalytic rate of Rubisco in crop plants would have great agronomic importance. The availability of three-dimensional structures of Rubisco at atomic resolution and the characterization of site-directed mutants have greatly enhanced the understanding of the catalytic mechanism of Rubisco. Considerable progress has been made in identifying natural variation in the catalytic properties of Rubisco from different species and in developing the tools for introducing both novel and foreign Rubisco genes into plants. The additional complexities of assembling copies of the two distinct polypeptide subunits of Rubisco into a functional holoenzyme in vivo (requiring sufficient expression, post-translational modification, interaction with chaperonins, and interaction with Rubisco activase) remain a major challenge. The consequences of changing the amount of Rubisco present in leaves have been investigated by the use of antisense constructs. The manipulation of genes encoding Rubisco activase has provided a means to investigate the regulation of Rubisco activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号