首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli d-3-phosphoglycerate dehydrogenase (PGDH) is a homotetrameric enzyme whose activity is allosterically regulated by l-serine, the end-product of its metabolic pathway. Previous studies have shown that PGDH displays two modes of cooperative interaction. One is between the l-serine binding sites and the other is between the l-serine binding sites and the active sites. Tryptophan 139 participates in an intersubunit contact near the active site catalytic residues. Site-specific mutagenesis of tryptophan 139 to glycine results in the dissociation of the tetramer to a pair of dimers and in the loss of cooperativity in serine binding and between serine binding and inhibition. The results suggest that the magnitude of inhibition of activity at a particular active site is primarily dependent on serine binding to that subunit but that activity can be modulated in a cooperative manner by interaction with adjacent subunits. The disruption of the nucleotide domain interface in PGDH by mutating Trp-139 suggests the potential for a critical role of this interface in the cooperative allosteric processes in the native tetrameric enzyme.  相似文献   

2.
At the junction of glycolysis and the Krebs cycle in cellular metabolism, the pyruvate dehydrogenase multienzyme complex (PDHc) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA. In mammals, PDHc is tightly regulated by phosphorylation-dephosphorylation of three serine residues in the thiamin-dependent pyruvate dehydrogenase (E1) component. In vivo, inactivation of human PDHc correlates mostly with phosphorylation of serine 264, which is located at the entrance of the substrate channel leading to the active site of E1. Despite intense investigations, the molecular mechanism of this inactivation has remained enigmatic. Here, a detailed analysis of microscopic steps of catalysis in human wild-type PDHc-E1 and pseudophosphorylation variant Ser264Glu elucidates how phosphorylation of Ser264 affects catalysis. Whereas the intrinsic reactivity of the active site in catalysis of pyruvate decarboxylation remains nearly unaltered, the preceding binding of substrate to the enzyme's active site via the substrate channel and the subsequent reductive acetylation of the E2 component are severely slowed in the phosphorylation variant. The structure of pseudophosphorylation variant Ser264Glu determined by X-ray crystallography reveals no differences in the three-dimensional architecture of the phosphorylation loop or of the active site, when compared to those of the wild-type enzyme. However, the channel leading to the active site is partially obstructed by the side chain of residue 264 in the variant. By analogy, a similar obstruction of the substrate channel can be anticipated to result from a phosphorylation of Ser264. The kinetic and thermodynamic results in conjunction with the structure of Ser264Glu suggest that phosphorylation blocks access to the active site by imposing a steric and electrostatic barrier for substrate binding and active site coupling with the E2 component. As a Ser264Gln variant, which carries no charge at position 264, is also selectively deficient in pyruvate binding and reductive acetylation of E2, we conclude that mostly steric effects account for inhibition of PDHc by phosphorylation.  相似文献   

3.
3-Hydroxyisobutyrate, a central metabolite in the valine catabolic pathway, is reversibly oxidized to methylmalonate semialdehyde by a specific dehydrogenase belonging to the 3-hydroxyacid dehydrogenase family. To gain insight into the function of this enzyme at the atomic level, we have determined the first crystal structures of the 3-hydroxyisobutyrate dehydrogenase from Thermus thermophilus HB8: holo enzyme and sulfate ion complex. The crystal structures reveal a unique tetrameric oligomerization and a bound cofactor NADP+. This bacterial enzyme may adopt a novel cofactor-dependence on NADP, whereas NAD is preferred in eukaryotic enzymes. The protomer folds into two distinct domains with open/closed interdomain conformations. The cofactor NADP+ with syn nicotinamide and the sulfate ion are bound to distinct sites located at the interdomain cleft of the protomer through an induced-fit domain closure upon cofactor binding. From the structural comparison with the crystal structure of 6-phosphogluconate dehydrogenase, another member of the 3-hydroxyacid dehydrogenase family, it is suggested that the observed sulfate ion and the substrate 3-hydroxyisobutyrate share the same binding pocket. The observed oligomeric state might be important for the catalytic function through forming the active site involving two adjacent subunits, which seems to be conserved in the 3-hydroxyacid dehydrogenases. A kinetic study confirms that this enzyme has strict substrate specificity for 3-hydroxyisobutyrate and serine, but it cannot distinguish the chirality of the substrates. Lys165 is likely the catalytic residue of the enzyme.  相似文献   

4.
The inhibition of Escherichia coli d-3-phosphoglycerate dehydrogenase by l-serine is positively cooperative with a Hill coefficient of approximately 2, whereas the binding of the inhibitor, l-serine, to the apoenzyme displays positive cooperativity in the binding of the first two serine molecules and negative cooperativity in the binding of the last two serine molecules. An earlier report demonstrated that the presence of phosphate appeared to lessen the degree of both the positive and negative cooperativity, but the cause of this effect was unknown. This study demonstrates that the presence of intrinsically bound NADH was responsible to a substantial degree for this effect. In addition, this study also provides evidence for negative cooperativity in NADH binding and for at least two NADH-induced conformational forms of the enzyme that bind the inhibitor in the physiological range. Successive binding of NADH to the enzyme resulted in an increase in the affinity for the first inhibitor ligand bound and a lessening of both the positive and negative cooperativity of inhibitor binding as compared with that seen in the absence of NADH. This effect was specific for NADH and was not observed in the presence of NAD+ or the substrate alpha-ketoglutarate. Conversely, the binding of l-serine did not have a significant effect on the stoichiometry of NADH binding, consistent with it being a V-type allosteric system. Thus, cofactor-related conditions were found in equilibrium binding experiments that significantly altered the cooperativity of inhibitor binding. Since the result of inhibitor binding is a reduction in the catalytic activity, the binding of inhibitor to these NADH-induced conformers must also induce additional conformations that lead to differential inhibition of catalytic activity.  相似文献   

5.
GA Grant 《Biochemistry》2012,51(35):6961-6967
The l-serine dehydratase from Legionella pneumophila (lpLSD) has recently been shown to contain a domain (β domain) that has a high degree of structural homology with the ASB domain of d-3-phosphoglycerate dehydrogenase (PGDH) from Mycobacterium tuberculosis. Furthermore, this domain has been shown by sequence homology to be present in all bacterial l-serine dehydratases that utilize an Fe-S catalytic center. In PGDH, l-serine binds to the ACT domain to inhibit catalytic activity. However, substrate must be bound to the ASB domain for serine to exert its effect. As such, the ASB domain acts as a codomain for the action of l-serine. Pre-steady-state kinetic analysis of l-serine binding to lpLSD demonstrates that l-serine binds to a second noncatalytic site and produces a conformational change in the enzyme. The rate of this conformational change is too slow for its participation in the catalytic cycle but rather occurs prior to catalysis to produce an activated form of the enzyme. That the conformational change must occur prior to catalysis is shown by a lag in the production of product that exhibits essentially the same rate constant as the conformational change. The second, noncatalytic site for l-serine is likely to be the ASB domain (β domain) of lpLSD that functions in a manner similar to that in PGDH. A mechanism whose overall effect is to keep l-serine levels from accumulating to high levels while not completely depleting the l-serine pool in the bacterial cell is proposed.  相似文献   

6.
The activation of sorghum NADP-malate dehydrogenase is initiated by thiol/disulfide interchanges with reduced thioredoxin followed by the release of the C-terminal autoinhibitory extension and a structural modification shaping the active site into a high efficiency and high affinity for oxaloacetate conformation. In the present study, the role of the active site arginines in the activation and catalysis was investigated by site-directed mutagenesis and arginyl-specific chemical derivatization using butanedione. Sequence and mass spectrometry analysis were used to identify the chemically modified groups. Taken together, our data reveal the involvement of Arg-134 and Arg-204 in oxaloacetate coordination, suggest an indirect role for Arg-140 in substrate binding and catalysis, and clearly confirm that Arg-87 is implicated in cofactor binding. In contrast with NAD-malate dehydrogenase, no lactate dehydrogenase activity could be promoted by the R134Q mutation. The decreased susceptibility of the activation of the R204K mutant to NADP and its increased sensitivity to the histidine-specific reagent diethylpyrocarbonate indicated that Arg-204 is involved in the locking of the active site. These results are discussed in relation with the recently published NADP-MDH three-dimensional structures and the previously established three-dimensional structures of NAD-malate dehydrogenase and lactate dehydrogenase.  相似文献   

7.
The crystal structure of d-3-phosphoglycerate dehydrogenase reveals a limited number of contacts between the regulatory and substrate binding domains of each subunit in the tetrameric enzyme. These occur between the side chains of Arg-339, Arg-405, and Arg-407 in the regulatory domain and main chain carbonyls in the substrate binding domain. In addition, Arg-339 participates in a hydrogen bonding network within the regulatory domain involving Arg-338 and Tyr-410, the C-terminal residue of the enzyme subunit. Mutagenic analysis of these residues produce profound effects on the enzyme's sensitivity to serine, the cooperativity of serine inhibition, and in some cases, the apparent overall conformation of the enzyme. Mutations of Arg-405 and Arg-407, which span the interface where the two domains come together, reduce the cooperativity of inhibition and increase the sensitivity of the enzyme to serine concentration. Serine binding studies with Arg-407 converted to Ala demonstrate that cooperativity of serine binding is also significantly reduced in a manner similar to the reduction in the cooperativity of inhibition. Mutations of Tyr-410 and Arg-338 decrease the sensitivity to serine without an appreciable effect on the cooperativity of inhibition. In the case of Tyr-410, a deletion mutant demonstrates that this effect is due to the loss of the C-terminal carboxyl group rather than the tyrosine side chain. All mutations of Arg-339, with the exception of its conversion to Lys, had profound effects on the stability of the enzyme. In general, those mutants that decrease sensitivity to serine are those that participate mainly in intradomain interactions and may also directly affect the serine binding sites themselves. Those mutants that decrease cooperativity are those that participate in interdomain interaction within the subunit. The observation that the mutants that decrease cooperativity also increase sensitivity to serine suggests a potential separation of pathways between how the simple act of serine binding results in noncooperative active site inhibition in the first place and how serine binding also leads to cooperativity between sites in the native enzyme.  相似文献   

8.
Fogle EJ  van der Donk WA 《Biochemistry》2007,46(45):13101-13108
Phosphite dehydrogenase (PTDH) is a unique NAD-dependent enzyme that catalyzes the oxidation of inorganic phosphite to phosphate. The enzyme has great potential for cofactor regeneration, and mechanistic studies have provided some insight into the residues that are important for catalysis. In this investigation, pre-steady-state studies were performed on the His6-tagged wild-type (WT) enzyme, several active site mutants, a thermostable mutant (12X-PTDH), and a thermostable mutant with dual cofactor specificity (NADP-12X-PTDH). Stopped-flow kinetic experiments indicate that slow steps after hydride transfer do not significantly limit the rate of reaction for the WT enzyme, the active site mutants, or the thermostable mutant. Pre-steady-state kinetic isotope effects (KIEs) and single-turnover experiments further confirm that slow steps after the chemical step do not significantly limit the rate of reaction for any of these proteins. Collectively, these results suggest that the hydride transfer step is fully rate determining in PTDH and that the observed KIE on kcat is the intrinsic effect in WT PTDH and the mutants examined. In contrast, a slow step after catalysis may partially limit the rate of phosphite oxidation by NADP-12X-PTDH with NADP as the cofactor. Finally, site-directed mutagenesis of Asp79 indicates that this residue is important in orienting Arg237 for proper interaction with phosphite.  相似文献   

9.
P A Tipton  J Peisach 《Biochemistry》1991,30(3):739-744
Mn2+.tartrate dehydrogenase.substrate complexes have been examined by electron spin echo envelope modulation spectroscopy. The occurrence of dipolar interactions between Mn2+ and 2H on [2H]pyruvate and [4-2H]NAD(H) confirms that Mn2+ binds at the enzyme active site. The 2H signal arising from labeled pyruvate was lost if the sample was incubated at room temperature, indicating that the enzyme catalyzes exchange between the pyruvate methyl protons and solvent protons. Mn-133Cs dipolar coupling was also observed, which suggests that the monovalent cation cofactor also binds in the active site. The tartrate analogue oxalate was observed to have a significant effect on the binding of NAD(H). Oxalate appears to constrain the binding of NAD(H) so that the nicotinamide portion of the cofactor is held in close proximity to Mn2+. Spectra of enzyme complexes prepared with (R)-[4-2H]NADH showed a more intense 2H signal than analogous complexes prepared with (S)-[4-2H]NADH, demonstrating that the pro-R position of NADH is closer to Mn2+ than the pro-S position and suggesting that tartrate dehydrogenase is an A-side-specific dehydrogenase. Oxalate also affected Cs+ binding; the intensity of the 133Cs signal increased in the presence of oxalate, which suggest that oxalate facilitates binding of Cs+ to the active site or that Cs+ binds closer to Mn2+ when oxalate is present. In addition to signals from substrates, electron spin echo envelope modulation spectra revealed 14N signals that arose from coordination to Mn2+ by nitrogen-containing ligands from the protein; however, the identity of this ligand or ligands remains obscure.  相似文献   

10.
C T Zimmerle  P P Tung  G M Alter 《Biochemistry》1987,26(26):8535-8541
The iodoacetate-dependent and iodoacetamide-dependent inhibition of cytoplasmic malate dehydrogenase (s-MDH) has been examined. We have confirmed previous reports that iodoacetate inhibits this dimeric enzyme by modifying a single active site methionine per s-MDH subunit. Time courses for the inactivation of the solution-state enzyme with both reagents indicate each s-MDH subunit is modified with equal rapidity in the absence of substrate or cofactor. However, the subunits react with distinctly different rates in the presence of cofactor or cofactor/substrate combinations, indicating some conformational asymmetry between subunits occurs when these ligands are bound. This is consistent with solution-state s-MDH behaving as a cooperative enzyme. Apo and holo crystalline s-MDH are also inhibited by iodoacetic acid. However, subunits of the crystalline enzyme are inhibited with different rates in the presence or absence of active site ligands. This suggests subunit conformations of the dimeric enzyme are not identical in crystalline s-MDH preparations regardless of ligand binding. Furthermore, by the criterion of inhibition rate constants, subunit conformations of the crystalline enzyme are not rigid but are perturbed by ligand binding. Comparisons of inactivation time courses for solution- and crystalline-state s-MDH suggest crystalline s-MDH exhibits at least some of the subunit asymmetry associated with the solution-state enzyme.  相似文献   

11.
Escherichia coli dihydrofolate reductase (DHFR) has several flexible loops surrounding the active site that play a functional role in substrate and cofactor binding and in catalysis. We have used heteronuclear NMR methods to probe the loop conformations in solution in complexes of DHFR formed during the catalytic cycle. To facilitate the NMR analysis, the enzyme was labeled selectively with [(15)N]alanine. The 13 alanine resonances provide a fingerprint of the protein structure and report on the active site loop conformations and binding of substrate, product, and cofactor. Spectra were recorded for binary and ternary complexes of wild-type DHFR bound to the substrate dihydrofolate (DHF), the product tetrahydrofolate (THF), the pseudosubstrate folate, reduced and oxidized NADPH cofactor, and the inactive cofactor analogue 5,6-dihydroNADPH. The data show that DHFR exists in solution in two dominant conformational states, with the active site loops adopting conformations that closely approximate the occluded or closed conformations identified in earlier X-ray crystallographic analyses. A minor population of a third conformer of unknown structure was observed for the apoenzyme and for the disordered binary complex with 5,6-dihydroNADPH. The reactive Michaelis complex, with both DHF and NADPH bound to the enzyme, could not be studied directly but was modeled by the ternary folate:NADP(+) and dihydrofolate:NADP(+) complexes. From the NMR data, we are able to characterize the active site loop conformation and the occupancy of the substrate and cofactor binding sites in all intermediates formed in the extended catalytic cycle. In the dominant kinetic pathway under steady-state conditions, only the holoenzyme (the binary NADPH complex) and the Michaelis complex adopt the closed loop conformation, and all product complexes are occluded. The catalytic cycle thus involves obligatory conformational transitions between the closed and occluded states. Parallel studies on the catalytically impaired G121V mutant DHFR show that formation of the closed state, in which the nicotinamide ring of the cofactor is inserted into the active site, is energetically disfavored. The G121V mutation, at a position distant from the active site, interferes with coupled loop movements and appears to impair catalysis by destabilizing the closed Michaelis complex and introducing an extra step into the kinetic pathway.  相似文献   

12.
l-3-Hydroxyacyl-CoA dehydrogenase reversibly catalyzes the conversion of l-3-hydroxyacyl-CoA to 3-ketoacyl-CoA concomitant with the reduction of NAD(+) to NADH as part of the beta-oxidation spiral. In this report, crystal structures have been solved for the apoenzyme, binary complexes of the enzyme with reduced cofactor or 3-hydroxybutyryl-CoA substrate, and an abortive ternary complex of the enzyme with NAD(+) and acetoacetyl-CoA. The models illustrate positioning of cofactor and substrate within the active site of the enzyme. Comparison of these structures with the previous model of the enzyme-NAD(+) complex reveals that although significant shifting of the NAD(+)-binding domain relative to the C-terminal domain occurs in the ternary and substrate-bound complexes, there are few differences between the apoenzyme and cofactor-bound complexes. Analysis of these models clarifies the role of key amino acids implicated in catalysis and highlights additional critical residues. Furthermore, a novel charge transfer complex has been identified in the course of abortive ternary complex formation, and its characterization provides additional insight into aspects of the catalytic mechanism of l-3-hydroxyacyl-CoA dehydrogenase.  相似文献   

13.
Liver alcohol dehydrogenase (LADH; E.C. 1.1.1.1) provides an excellent system for probing the role of binding interactions with NAD(+) and alcohols as well as with NADH and the corresponding aldehydes. The enzyme catalyzes the transfer of hydride ion from an alcohol substrate to the NAD(+) cofactor, yielding the corresponding aldehyde and the reduced cofactor, NADH. The enzyme is also an excellent catalyst for the reverse reaction. X-ray crystallography has shown that the NAD(+) binds in an extended conformation with a distance of 15 A between the buried reacting carbon of the nicotinamide ring and the adenine ring near the surface of the horse liver enzyme. A major criticism of X-ray crystallographic studies of enzymes is that they do not provide dynamic information. Such data provide time-averaged and space-averaged models. Significantly, entries in the protein data bank contain both coordinates as well as temperature factors. However, enzyme function involves both dynamics and motion. The motions can be as large as a domain closure such as observed with liver alcohol dehydrogenase or as small as the vibrations of certain atoms in the active site where reactions take place. Ternary complexes produced during the reaction of the enzyme binary entity, E-NAD(+), with retinol (vitamin A alcohol) lead to retinal (vitamin A aldehyde) release and the enzyme binary entity E-NADH. Retinal is further metabolized via the E-NAD(+)-retinal ternary complex to retinoic acid (vitamin A acid). To unravel the mechanistic aspects of these transformations, the kinetics and energetics of interconversion between various ternary complexes are characterized. Proton transfers along hydrogen bond bridges and NADH hydride transfers along hydrophobic entities are considered in some detail. Secondary kinetic isotope effects with retinol are not particularly large with the wild-type form of alcohol dehydrogenase from horse liver. We analyze alcohol dehydrogenase catalysis through a re-examination of the reaction coordinates. The ground states of the binary and ternary complexes are shown to be related to the corresponding transition states through topology and free energy acting along the reaction path.  相似文献   

14.
Site-directed mutagenesis has been used to explore the role of two carboxylates in the active site of histidine decarboxylase from Lactobacillus 30a. The most striking observation is that conversion of Glu197 to either Gln or Asp causes a major decrease in catalytic rate while enhancing substrate binding. This is consistent with models based on X-ray diffraction results which suggest that the acid may protonate a reaction intermediate during catalysis. The Asp197 protein undergoes a suicide reaction with substrate, apparently triggered by inappropriate protonation of the intermediate. This leads to decarboxylation-dependent transamination which converts the pyruvoyl cofactor to an alanine, inactivating the enzyme. Conversion of Glu66 to Gln affects parameters of kinetic cooperativity. The mutation fixes the Hill number at approximately 1.5, midway between the pH-dependent values of the wild-type enzyme.  相似文献   

15.
Cytoplasmic malate dehydrogenase (cMDH) is a key enzyme in several metabolic pathways. Though its activity has been examined extensively, there are lingering mechanistic uncertainties involving substrate and cofactor binding. To more completely understand this enzyme's interactions with cofactor and substrate ligands, a fluorescent reporter group was introduced into the enzyme's structure. This was accomplished by selective modification of Cys 110. The reaction placed an aminonaphthaline sulfonic acid group near the enzyme's active site. Substrate, inhibitor, and NAD binding activities were characterized using changes in this label's fluorescence. Results demonstrated that both substrate and cofactor molecules bound to the enzyme in the absence of their companion ligands. This is in contrast to strictly ordered cofactor then substrate binding as has been suggested by kinetic analyses of closely related enzymes. Binding results also indicated that the cofactor, NAD, bound to cMDH in a negatively cooperative manner, but substrates and the inhibitor, hydroxymalonate, bound non-cooperatively. Multiple substrate binding modes were identified and interactions between substrate and cofactor binding were found.  相似文献   

16.
Benzoylformate decarboxylase is a member of the family of enzymes that are dependent on the cofactor thiamin diphosphate. A structure of this enzyme binding (R)-mandelate, a competitive inhibitor, suggests that at least two hydrogen bonds are formed between the substrate, benzoylformate, and active site side chains. The first is between the carboxylate group of benzoylformate and the hydroxyl group of S26, and the second is between carbonyl group of the substrate and an imidazole nitrogen of H70. Steady-state kinetic studies indicate that the catalytic parameters are strongly affected in three active site mutants, S26A, H70A, and H281A. The K(m) of S26A was increased most dramatically, 25-fold more than that of the wild-type enzyme, while the K(i) of (R)-mandelate was increased 100-fold, suggesting that the serine hydroxyl is important for substrate binding. The k(cat) of H70A is reduced more than 3 orders of magnitude, strongly implicating this residue in catalysis, and H281 showed significant, but smaller magnitude, effects on both K(m) and k(cat). Stopped-flow experiments using an alternative substrate, p-nitrobenzoylformate, lead to kinetic resolution of the fate of key thiamin diphosphate-bound intermediates. Together, the experimental results suggest the following roles for residues in the active site. The residue H70 is important for the protonation of the 2-alpha-mandelyl-ThDP intermediate, thereby assisting in decarboxylation, and for the deprotonation of the 2-alpha-hydroxybenzyl-ThDP intermediate, aiding product release. H281 is involved in protonation of the enamine. Surprisingly, S26 appears to be involved not only in substrate binding but also in other steps of the reaction.  相似文献   

17.
Thermoanaerobacter brockii alcohol dehydrogenase (TbADH) catalyzes the reversible oxidation of secondary alcohols to the corresponding ketones using NADP(+) as the cofactor. The active site of the enzyme contains a zinc ion that is tetrahedrally coordinated by four protein residues. The enzymatic reaction leads to the formation of a ternary enzyme-cofactor-substrate complex; and catalytic hydride ion transfer is believed to take place directly between the substrate and cofactor at the ternary complex. Although crystallographic data of TbADH and other alcohol dehydrogenases as well as their complexes are available, their mode of action remains to be determined. It is firmly established that the zinc ion is essential for catalysis. However, there is no clear agreement about the coordination environment of the metal ion and the competent reaction intermediates during catalysis. We used a combination of X-ray absorption, circular dichroism (CD), and fluorescence spectroscopy, together with structural analysis and modeling studies, to investigate the ternary complexes of TbADH that are bound to a transition-state analogue inhibitor. Our structural and spectroscopic studies indicated that the coordination sphere of the catalytic zinc site in TbADH undergoes conformational changes when it binds the inhibitor and forms a pentacoordinated complex at the zinc ion. These studies provide the first active site structure of bacterial ADH bound to a substrate analogue. Here, we suggest the active site structure of the central intermediate complex and, more specifically, propose the substrate-binding site in TbADH.  相似文献   

18.
R67 dihydrofolate reductase (DHFR) is a novel protein that possesses 222 symmetry. A single active site pore traverses the length of the homotetramer. Although the 222 symmetry implies that four symmetry-related binding sites should exist for each substrate as well as each cofactor, isothermal titration calorimetry (ITC) studies indicate only two molecules bind. Three possible combinations include two dihydrofolate molecules, two NADPH molecules, or one substrate with one cofactor. The latter is the productive ternary complex. To evaluate the roles of A36, Y46, T51, G64, and V66 residues in binding and catalysis, a site-directed mutagenesis approach was employed. One mutation per gene produces four mutations per active site pore, which often result in large cumulative effects. Conservative mutations at these positions either eliminate the ability of the gene to confer trimethoprim resistance or have no effect on catalysis. This result, in conjunction with previous mutagenesis studies on K32, K33, S65, Q67, I68, and Y69 [Strader, M. B., et al. (2001) Biochemistry 40, 11344-11352; Hicks, S. N., et al. (2003) Biochemistry 42, 10569-10578; Park, H., et al. (1997) Protein Eng. 10, 1415-1424], allows mapping of the active site surface. Residues for which conservative mutations have large effects on binding and catalysis include K32, Q67, I68, and Y69. These residues form a stripe that establishes the ligand binding surface. Residues that accommodate conservative mutations that do not greatly affect catalysis include K33, Y46, T51, S65, and V66. Isothermal titration calorimetry studies were also conducted on many of the mutants described above to determine the enthalpy of folate binding to the R67 DHFR.NADPH complex. A linear correlation between this DeltaH value and log k(cat)/K(m) is observed. Since structural tightness appears to be correlated with the exothermicity of the binding interaction, this leads to the hypothesis that enthalpy-driven formation of the ternary complex in these R67 DHFR variants plays a strong role in catalysis. Use of the alternate cofactor, NADH, extends this correlation, indicating preorganization of the ternary complex determines the efficiency of the reaction. This hypothesis is consistent with data suggesting R67 DHFR uses an endo transition state (where the nicotinamide ring of cofactor overlaps the more bulky side of the substrate's pteridine ring).  相似文献   

19.
Stopped flow spectrophotometry was used to investigate the kinetics of the transition of the phosphoglycerate dehydrogenase (3-phosphoglycerate: NAD oxidoreductase, EC 1.1.1.95) reaction from the active to the inhibited rate upon the addition of the physiological inhibitor serine. The transition was characterized by a single first order rate constant (kobs,i) which was independent of enzyme concentration. At pH 8.5, kobs,i increased in a hyperbolic manner with serine concentration from 2 to 8 s-1. The increase in kobs,i occurred at serine concentrations where the steady state inhibition was virtually complete. These results indicate that serine inhibition is an allosteric process involving a conformational change in the enzyme. A model is presented in which serine at low concentrations binds exclusively to the inhibited state of the enzyme and shifts the equilibrium toward that state; at high serine concentrations, serine binds to the active state, facilitating its conversion to the inhibited state. An alternative model, which we favor, proposes two classes of inhibitor binding sites. The kinetics of the fluorescence quenching of enzyme-bound NADH by serine (Sugimoto, E., and Pizer, L.I. (1968) J. Biol. Chem. 243, 2090-2098), measured by stopped flow fluorimetry, was also characterized by a single first order rate constant (kobs,f.q.) which was independent of enzyme concentration. At pH 8.5, kobs,f.q. ranged from 0.4 s-1 at low serine concentrations to 1.1 s-1 at high serine concentrations. These results indicate that the fluorescence quenching induced by serine is a manifestation of a structural change in the enzyme. Enzyme and excess NADH were mixed with substrate and serine in the stopped flow instrument, and enzyme-bound NADH fluorescence was monitored by exciting through the protein at 285 nm. A rapid fluorescence quenching process, which occurred within the mixing time, was followed by a slower fluorescence enhancement process which terminated in a steady state level corresponding to the quenched fluorescence of the enzyme NADH serine complex. The rapid quenching was the result of substrate binding (Dubrow, R., and Pizer, L.I. (1977) J. Biol. Chem. 252, 1539-1551). The fluorescence enhancement was characterized by a single first order rate constant whose value for a given serine concentration corresponded with Kobs,j. This data shows that the quenched state of the enzyme-NADH-complex is the state which is directly responsible for the inhibition of enzyme activity. During catalysis the quenched state is achieved from a different initial conformation, and consequently at a different rate, than in the absence of substrate. kobs,j and kobs,f.q. were also measured using glycine, another inhibitor. The ultraviolet difference spectrum between enzyme and enzyme plus serine was determined and proposed to be the result of the same structural change which is responsible for the fluorescence quenching by serine.  相似文献   

20.
Eukaryotic low-molecular-weight protein tyrosine phosphatases (LMW PTPs) contain a conserved serine, a histidine with an elevated pKa, and an active site asparagine that together form a highly conserved hydrogen bonding network. This network stabilizes the active site phosphate binding loop for optimal substrate binding and catalysis. In the phosphatase from the bovine parasite Tritrichomonas foetus (TPTP), both the conserved serine (S37) and asparagine (N14) are present, but the conserved histidine has been replaced by a glutamine residue (Q67). Site-directed mutagenesis, kinetic, and spectroscopic experiments suggest that Q67 is located near the active site and is important for optimal catalytic activity. Kinetic experiments also suggest that S37 participates in the active site/hydrogen bonding network. Nuclear magnetic resonance spectroscopy was used to determine the three-dimensional structure of the TPTP enzyme and to further examine the roles of S37 and Q67. The backbone conformation of the TPTP phosphate binding loop is nearly superimposable with that of other tyrosine phosphatases, with N14 existing in a strained, left-handed conformation that is a hallmark of the active site hydrogen bonding network in the LMW PTPs. As expected, both S37 and Q67 are located at the active site, but in the consensus structure they are not within hydrogen bonding distance of N14. The hydrogen bond interactions that are observed in X-ray structures of LMW PTPs may in fact be transient in solution. Protein dynamics within the active site hydrogen bonding network appear to be affected by the presence of substrate or bound inhibitors such as inorganic phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号