首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclically parthenogenetic organisms may have facultative asexual counterparts. Such organisms, including aphids, are therefore interesting models for the study of ecological and genetic interactions between lineages differing in reproductive mode. Earlier studies on aphids have revealed major differences in the genetic outcomes of populations that are possibly resulting mostly either from sexual or from asexual reproduction. Besides, notable gene flow between sexual and asexual derivatives has been suspected, which could lead to the emergence of new asexual lineages. The present study examines the interplay between these lineages and is based on analyses of population structure of individuals that may contribute to the pool of sexual reproductive forms in the host alternating aphid Rhopalosiphum padi. Using a Bayesian assignment method, we first show that the sexual forms of R. padi on mating sites encompass two genetically distinct clusters of individuals in the western part of France. The first cluster included unique genotypes of sexual lineages, while the second cluster included facultatively asexual lineages in numerous copies, the reproductive mode of the two clusters being confirmed by reference clones. Sexual reproductive forms produced by sexual and facultatively asexual lineages are thus admixed at mating sites which gives a large opportunity for the two clusters to mate with each other. Nevertheless, this study also highlights, as previously demonstrated, that the two clusters retained high genetic differentiation. Possible explanations for the inferred limited genetic exchanges are advanced in the discussion, but further dedicated investigations are required to solve this paradox.  相似文献   

2.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

3.
Aphids are among the few organisms capable of reproducing either sexually or asexually. This plasticity in reproductive mode is viewed as an adaptive response to cope with seasonal changes. Clonal reproduction occurs during the growing season allowing rapid population increase, while sexual reproduction occurs during late summer and leads to frost-resistant eggs that can survive winter conditions. This shift between these two extreme reproductive modes is achieved by using the same genotype, i.e. within the same genetic clone, and is triggered by photoperiodic changes perceived by the aphid brain or visual system. Advances have been made recently to depict genetic programs that relate to the regulation of reproductive modes in aphids. These studies have benefited from the rapid development of genomic and post-genomic resources obtained through the International Aphid Genomics Consortium. Here, we underline the importance of several candidate genes in the switch from clonal to sexual reproduction in aphids and whose roles await full validation. Besides reproductive mode variation expressed at the genotypic level, aphid species also frequently encompass lineages which have lost the sexual phase and hence the alternating clonal and sexual reproductive phases of the life cycle. This coexistence of sex and asexual reproduction within the same species raises questions on its evolutionary and ecological significance. We summarize the knowledge accumulated to date on the maintenance of sex as well as on the origin and evolution of asexuality in aphids. By combining functional genomics, genetic and ecological approaches on reproductive plasticity and polymorphism, we hope to obtain an integrative view of the evolutionary forces shaping aphid reproductive strategies, from gene to population and species levels.  相似文献   

4.
Cases of coexisting sexual and asexual relatives are puzzling, as evolutionary theory predicts that competition for the same ecological niches should lead to the exclusion of one or the other population. In the cyclically parthenogenetic aphid, Rhopalosiphum padi, sexual and facultative asexual lineages are admixed in space at the time of sexual reproduction. We investigated how the interaction of reproductive mode and environment can lead to temporal niche differentiation. We demonstrated theoretically that differential sensitivity of sexual and facultatively asexual aphids to an environmental parameter (mating host suitability) shapes the two strategies: whereas the sexual lineages switch earlier to the production of sexual forms, the facultative asexual lineages delay and spread out their investment in sexual reproduction. This predicted pattern of niche specialization is in agreement with the temporal structure revealed in natura by demographic and genetic data. We propose that partial loss of sex by one pool of aphids and subsequent reduction in gene flow between lineages may favour temporal specialization through disruptive selection.  相似文献   

5.
Important questions remain about the long-term survival and adaptive significance of eukaryotic asexual lineages. Numerous papers dealing with sex advantages still continued to compare parthenogenetic populations versus sexual populations arguing that sex demonstrates a better fitness. Because asexual lineages do not possess any recombination mechanisms favoring rapid changes in the face of severe environmental conditions, they should be considered as an evolutionary dead-end. Nevertheless, reviewing literature dealing with asexual reproduction, it is possible to draw three stimulating conclusions. (1) Asexual reproduction in eukaryotes considerably differs from prokaryotes which experience recombination but neither meiosis nor syngamy. Recombination and meiosis would be a driving force for sexual reproduction. Eukaryotes should therefore be considered as a continuum of sexual organisms that are more or less capable (and sometimes incapable) of sexual reproduction. (2) Rather than revealing ancestral eukaryotic forms, most known lineages of asexual eukaryotes have lost sex due to a genomic conflict affecting their sexual capacity. Thus, it could be argued that hybridization is a major cause of their asexuality. Asexuality may have evolved as a reproductive mechanism reducing conflict within organisms. (3) It could be proposed that, rather than being generalists, parthenogenetic hybrid lineages could be favored when exploiting peculiar restricted ecological niches, following the “frozen niche variation” model. Although hybrid events may result in sex loss, probably caused by genomic conflict, asexual hybrids could display new original adaptive traits, and the rapid colonization of environments through clonal reproduction could favor their long-term survival, leading to evolutionary changes and hybrid speciation. Examination of the evolutionary history of asexual lineages reveals that evolutionary processes act through transitional stages in which even very small temporary benefits may be enough to counter the expected selective disadvantages.  相似文献   

6.
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.  相似文献   

7.
Aphid species may exhibit different reproductive modes ranging from cyclical to obligate parthenogenesis. The distribution of life cycle variation in aphids is generally determined by ecological forces, mainly climate, because only sexually produced diapausing eggs can survive harsh winters or periods of absence of suitable host plants. Aphids are thus interesting models to investigate intrinsic and environmental factors shaping the competition among sexual and asexual lineages. We conducted a Europe-wide sampling of black bean aphids, Aphis fabae, and combined population genetic analyses based on microsatellite data with an experimental determination of life cycle strategies. Aphids were collected from broad beans (Vicia faba) as well as some Chenopodiaceae, but we detected no genetic differentiation between aphids from different host plants. Consistent with model predictions, life cycle variation was related to climate, with aphids from areas with cold winters investing more in sexual reproduction than aphids from areas with mild winters. Accordingly, only populations from mild areas exhibited a clear genetic signature of clonal reproduction. These differences arise despite substantial gene flow over large distances, which was evident from a very low geographic population structure and a lack of isolation-by-distance among 18 sites across distances of more than 1000 km. There was virtually no genetic differentiation between aphids with different reproductive modes, suggesting that new asexual lineages are formed continuously. Indeed, a surprising number of A. fabae genotypes even from colder climates produced some parthenogenetic offspring under simulated winter conditions. From this we predict that a shift to predominantly asexual reproduction could take place rapidly under climate warming.  相似文献   

8.
Cyclically parthenogenetic animals such as aphids are able alternating sexual and asexual reproduction during its life cycle, and represent good models for studying short-term evolutionary consequences of sex. In aphids, different morphs, whether sexual or asexual, winged or wingless, are produced in response to specific environmental cues. The production of these morphs could imply a differential energy investment between the two reproductive phases (i.e., sexual and asexual), which can also be interpreted in terms of changes in genetic variation and/or trade-offs between the associated traits. In this study we compared the G-matrices of energy metabolism, life-history traits and morph production in 10 clonal lineages (genotypes) of the pea aphid, Acyrthosiphon pisum, during both sexual and asexual phases. The heritabilities (broad-sense) were significant for almost all traits in both phases; however the only significant genetic correlation we found was a positive correlation between resting metabolic rate and production of winged parthenogenetic females during the asexual phase. These results suggest the pea aphid shows some lineage specialization in terms of energy costs, but a higher specialization in the production of the different morphs (e.g., winged parthenogenetic females). Moreover, the production of winged females during the asexual phase appears to be more costly than wingless females. Finally, the structures of genetic variance-covariance matrices differed between both phases. These differences were mainly due to the correlation between resting metabolic rate and winged parthenogenetic females in the asexual phase. This structural difference would be indicating that energy allocation rules changes between phases, emphasizing the dispersion role of asexual morphs.  相似文献   

9.
All‐female sperm‐dependent species are particular asexual organisms that must coexist with a closely related sexual host for reproduction. However, demographic advantages of asexual over sexual species that have to produce male individuals could lead both to extinction. The unresolved question of their coexistence still challenges and fascinates evolutionary biologists. As an alternative hypothesis, we propose those asexual organisms are afflicted by a demographic cost analogous to the production of males to prevent exclusion of the host. Previously proposed hypotheses stated that asexual individuals relied on a lower fecundity than sexual females to cope with demographic advantage. In contrast, we propose that both sexual and asexual species display the same number of offspring, but half of asexual individuals imitate the cost of sex by occupying ecological niches but producing no offspring. Simulations of population growth in closed systems under different demographic scenarios revealed that only the presence of nonreproductive individuals in asexual females can result in long‐term coexistence. This hypothesis is supported by the fact that half of the females in some sperm‐dependent organisms did not reproduce clonally.  相似文献   

10.
The typical life cycle of an aphid is cyclical parthenogenesis which involves the alternation of sexual and asexual reproduction. However, aphid life cycles, even within a species, can encompass everything on a continuum from obligate sexuality, through facultative sexuality to obligate asexuality. Loss of the sexual cycle in aphids is frequently associated with the introduction of a new pest and can occur for a number of environmental and genetic reasons. Here we investigate loss of sexual function in Sitobion aphids in Australia. Specifically, we aimed to determine whether an absence of sexual reproduction in Australian Sitobion results from genetic loss of sexual function or environmental constraints in the introduced range. We addressed our aims by performing a series of breeding experiments. We found that some lineages have genetically lost sexual function while others retain sexual function and appear environmentally constrained to asexuality. Further, in our crosses, using autosomal and X-linked microsatellite markers, we identified processes deviating from normal Mendelian segregation. We observed strong deviations in X chromosome transmission through the sexual cycle. Additionally, when progeny genotypes were examined across multiple loci simultaneously we found that some multilocus genotypes are significantly over-represented in the sample and that levels of heterozygosity were much higher than expected at almost all loci. This study demonstrates that strong biases in the transmission of X chromosomes through the sexual cycle are likely to be widespread in aphids. The mechanisms underlying these patterns are not clear. We discuss several possible alternatives, including mutation accumulation during periods of functional asexuality and genetic imprinting.  相似文献   

11.
Cyclical parthenogens, including aphids, are attractive models for comparing the genetic outcomes of sexual and asexual reproduction, which determine their respective evolutionary advantages. In this study, we examined how reproductive mode shapes genetic structure of sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) populations of the aphid Rhopalosiphum padi by comparing microsatellite and allozyme data sets. Allozymes showed little polymorphism, confirming earlier studies with these markers. In contrast, microsatellite loci were highly polymorphic and showed patterns very discordant from allozyme loci. In particular, microsatellites revealed strong heterozygote excess in asexual populations, whereas allozymes showed heterozygote deficits. Various hypotheses are explored that could account for the conflicting results of these two types of genetic markers. A strong differentiation between reproductive modes was found with both types of markers. Microsatellites indicated that sexual populations have high allelic polymorphism and heterozygote deficits (possibly because of population subdivision, inbreeding or selection). Little geographical differentiation was found among sexual populations confirming the large dispersal ability of this aphid. In contrast, asexual populations showed less allelic polymorphism but high heterozygosity at most loci. Two alternative hypotheses are proposed to explain this heterozygosity excess: allele sequence divergence during long-term asexuality or hybrid origin of asexual lineages. Clonal diversity of asexual lineages of R. padi was substantial suggesting that they could have frozen genetic diversity from the pool of sexual lineages. Several widespread asexual genotypes were found to persist through time, as already seen in other aphid species, a feature seemingly consistent with the general-purpose genotype hypothesis.  相似文献   

12.
Macrocyst formation in the cellular slime moulds is a sexual process induced under dark and humid conditions. Normal development life cycle in these organisms involves proliferation by cell division and, upon starvation, formation of multicellular aggregates and fruiting bodies, consisting of spores and stalk cells. Macrocyst formation, cell division by binary fission and spore formation are thus three alternative modes of reproduction, for which it is of interest to understand how a choice is made. The genetic basis of asexual development and fruiting body formation is well known, by contrast information on the genetic control of sexual reproduction during macrocyst formation is scarce. In Dictyostelium discoideum, the most widely used species, several cell-surface proteins relevant to sexual cell fusion have been identified using cell fusion-blocking antibodies, but isolation of the relevant genes has been unsuccessful. Analysis of sexually deficient mutants, some of which are normal for asexual development, has shown that sexual reproduction is regulated by both specific genes and genes that are also involved in asexual development. Reverse genetic analysis of 24 genes highly enriched in a gamete-specific subtraction library has revealed four genes involved in the regulation of sexual cell interactions. One of them was found to be a novel regulator of the cAMP signalling pathway specific to sexual development. Studies on the molecular genetic control of the sexual cycle will be reviewed and their contribution to our understanding of the organization and function of the D. discoideum genome as a whole discussed.  相似文献   

13.
Abstract. The starlet sea anemone, Nematostella vectensis , is a small burrowing estuarine animal, native to the Atlantic coast of North America. In recent years, this anemone has emerged as a model system in cnidarian developmental biology. Molecular studies of embryology and larval development in N. vectensis have provided important insights into the evolution of key metazoan traits. However, the adult body plan of N. vectensis may arise via four distinct developmental trajectories: (1) embryogenesis following sexual reproduction, (2) asexual reproduction via physal pinching, (3) asexual reproduction via polarity reversal, and (4) regeneration following bisection through the body column. Here, we compare the ontogenetic sequences underlying alternate developmental trajectories. Additionally, we describe the predictable generation of anomalous phenotypes that can occur following localized injuries to the body column. These studies suggest testable hypotheses on the molecular mechanisms underlying alternate developmental trajectories, and they provoke new questions about the evolution of novel developmental trajectories and their initiation via environmental cues.  相似文献   

14.
Evolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X) depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i) the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii) sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii) in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq) in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying an alternative mode of sex chromosome inheritance to understanding the forces shaping chromosome evolution.  相似文献   

15.
We addressed the question of whether Aspergillus nidulans has more than one cyclin-dependent kinase gene and identified such a gene, phoA, encoding two PSTAIRE-containing kinases (PHOAM1 and PHOAM47) that probably result from alternative pre-mRNA splicing. PHOAM47 is 66% identical to Saccharomyces cerevisiae Pho85. The function of this gene was studied using phoA null mutants. It functions in a developmental response to phosphorus-limited growth but has no effect on the regulation of enzymes involved in phosphorus acquisition. Aspergillus nidulans shows both asexual and sexual reproduction involving temporal elaboration of different specific cell types. We demonstrate that developmental decisions in confluent cultures depend upon both the initial phosphorus concentration and the inoculation density and that these factors influence development through phoA. In the most impressive cases, absence of phoA resulted in a switch from asexual to sexual development (at pH 8), or the absence of development altogether (at pH 6). The phenotype of phoA deletion strains appears to be specific for phosphorus limitation. We propose that PHOA functions to help integrate environmental signals with developmental decisions to allow ordered differentiation of specific cell types in A.nidulans under varying growth conditions. The results implicate a putative cyclin-dependent kinase in the control of development.  相似文献   

16.
Considerable work in evolutionary biology has focused on the question of why sex persists. Both advantages to sex and constraints limiting a return to asexual reproduction are hypothesized to maintain sex once it evolves. Developmental constraints would limit asexual reproduction from a sexual species if it were difficult for females to switch from making eggs that do not develop without fertilization to making zygotes that are capable of developing in the absence of fertilization. Nauphoeta cinerea is an ovoviviparous cockroach in which some females are capable of switching from a sexual mode of reproduction to an asexual mode when isolated from males. Yet, while facultative parthenogenesis can occur in individuals, few females make the switch. Thus, this cockroach provides an ideal system for examining the potential role of developmental constraints in maintaining sex. Here we compare the cytogenetics and embryonic development of sexual and parthenogenetic offspring in N. cinerea. We find that deviations from normal ploidy levels are associated with abnormal development. All viable N. cinerea embryos exhibit typically hemimetabolous insect embryogenesis. Although there is no variation among embryos in development within a sexually produced clutch, we see extreme variation in asexually derived clutches. These results suggest that developmental constraints limit the success of asexual reproduction in this facultatively parthenogenetic cockroach. Our data further suggest that the specific constraint occurs in the switch from a meiotic mode of reproduction requiring fertilization to diploid zygotes that develop in the absence of fertilization.  相似文献   

17.
Macrocyst formation in the cellular slime moulds is a sexual process induced under dark and humid conditions. Normal development life cycle in these organisms involves proliferation by cell division and, upon starvation, formation of multicellular aggregates and fruiting bodies, consisting of spores and stalk cells. Macrocyst formation, cell division by binary fission and spore formation are thus three alternative modes of reproduction, for which it is of interest to understand how a choice is made. The genetic basis of asexual development and fruiting body formation is well known, by contrast information on the genetic control of sexual reproduction during macrocyst formation is scarce. In Dictyostelium discoideum, the most widely used species, several cell-surface proteins relevant to sexual cell fusion have been identified using cell fusion-blocking antibodies, but isolation of the relevant genes has been unsuccessful. Analysis of sexually deficient mutants, some of which are normal for asexual development, has shown that sexual reproduction is regulated by both specific genes and genes that are also involved in asexual development. Reverse genetic analysis of 24 genes highly enriched in a gamete-specific subtraction library has revealed four genes involved in the regulation of sexual cell interactions. One of them was found to be a novel regulator of the cAMP signalling pathway specific to sexual development. Studies on the molecular genetic control of the sexual cycle will be reviewed and their contribution to our understanding of the organization and function of the D. discoideum genome as a whole discussed.  相似文献   

18.
Many organisms considered as strictly clonal may in fact experience some rare events of sexual reproduction with their sexual relatives. However, the rate of sexual–asexual gene flow has rarely been assessed mainly because its evaluation is difficult to achieve in the field. In the cyclically parthenogenetic aphid Rhopalosiphum padi , two main sets of lineages, differing in their investment in sexual reproduction and in their genetic attributes, co-exist even at a very fine scale: the 'sexual' lineages which have a full commitment to the sexual reproduction, and the 'facultatively asexual' lineages, which allocate investment in the sexual and parthenogenetic reproduction. This system offers a unique opportunity to tackle the genetic interactions between two contrasting reproductive modes. Here, we provide evidence that gene flow occurred between sexual and facultatively asexual lineages of R. padi. We carefully examined the shuffling in phenotypic and genotypic variation following a sexual reproduction event that took place in the field. Combining genotypic data and phenotypic measurements showed that this gene mixing led to the production of a wide array of reproductive modes, including strictly asexual lineages. Finally, we discuss the central role played by facultatively asexual lineages on the maintenance of reproductive mode variation.  相似文献   

19.
The evolutionary maintenance of sex is one of the big unresolved puzzles in biology. All else being equal, all-female asexual populations should enjoy a two-fold reproductive advantage over sexual relatives consisting of male and female individuals. However, the "all else being equal" assumption rarely holds in real organisms because asexuality tends to be confounded with altered genomic constitutions such as hybridization and polyploidization or to be associated with parthenogenesis-inducing microbes. This limits the ability to draw general conclusions from any particular system. Here we describe a new system that permits unbiased comparisons of sexual and asexual reproduction: the parasitic wasp Lysiphlebus fabarum. Crossing experiments demonstrated that asexual reproduction has a simple genetic basis in this species and is consistently inherited as a single-locus recessive trait. We further show that the asexuality-inducing allele exhibits complete linkage to a specific allele at a microsatellite marker: all asexual lines in the field were homozygous for this allele, and the allele cosegregated perfectly with asexual reproduction in our experimental crossings. This novel system of contagious asexuality allows the production of closely related individuals with different reproductive modes, as well as the monitoring of the asexuality-inducing allele in natural and experimental populations.  相似文献   

20.
Amoebae of cellular slime molds have two developmental modes, asexual fruiting body formation and sexual macrocyst formation. How developmental choice is made is an interesting subject of wide importance. Light exposure and dry conditions are favorable for asexual development, while conditions of darkness and high humidity are so for sexual development. In Dictyostelium discoideum , the latter conditions enhance zygote formation, which determines the fate of surrounding cells for sexual development. Here, a mutant (TMC1) defective in the post-fusion aggregation of cells during sexual development is described. This mutant is also aggregationless in asexual development, and the level of cyclic adenosine monophosphate (cAMP) receptor is reduced. Correspondingly, a series of existing mutants with defects in cAMP signaling pathways showed the same sexual phenotype as TMC1. These results suggest that molecular mechanisms of development are shared by the two alternative developmental modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号