首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extracellular metalloprotease named No. 114 protease is one of the major secretions of a psychrotrophic bacterium, Pseudomonas fluorescens 114, the cold-adaptation mechanism of which has not been identified. In this study, we purified and cloned No. 114 protease, which is a single polypeptide having a molecular mass of 47 kDa. This protease contains a zinc-binding motif (HEXXHXUGUXH: X, arbitrary amino acid; U, bulky hydrophobic amino acid), glycine-rich repeats (GGXGXD) and no cysteine residue, which are the features specifically found in serralysin subfamily. No. 114 protease has its maximum activity at the temperature of 35-40 degrees C, which is about 20 degrees C lower than that of a serralysin from a mesophilic bacterium, Pseudomonas aeruginosa. All these results imply that No. 114 protease from this psychrophilic bacterium is a unique member of the serralysin group characterized by a low optimal temperature.  相似文献   

2.
A novel protease produced by Aeromonas caviae was purified and characterized. The molecular weight of the protease (AP19) was estimated as 19 kDa on SDS-polyacrylamide gel electrophoresis. The protease activity was not inhibited completely by heating at 100 degrees C for 15 min. The proteolytic activities were inhibited by metalloprotease inhibitor. The N-terminal amino acid sequence of AP19 was VTASVSFSGRCTN. AP19 did not activate Aeromonas proaerolysin, and did not show fluid accumulation in the rabbit intestinal loop test. A high concentration of the protease showed cytotoxic activity against Vero cells.  相似文献   

3.
This work reports the first isolation and characterization of an alkaline phosphatase (AP) from a hyperthermophilic archaeon. An AP gene from Pyrococcus abyssi, a euryarchaeon isolated from a deep-sea hydrothermal vent, was cloned and the enzyme expressed in Escherichia coli. Analysis of the sequence showed conservation of the active site and structural elements of the E. coli AP. The recombinant AP was purified and characterized. Monomeric and homodimeric active forms were detected, with a monomer molecular mass of 54 kDa. Apparent optimum pH and temperature were estimated at 11.0 and 70 degrees C, respectively. Thus far, P. abyssi AP has been demonstrated to be the most thermostable AP, with half-lives at 100 and 105 degrees C of 18 and 5 h, respectively. Enzyme activity was found to be dependent on divalent cations: metal ion chelators inhibited activity, whereas the addition of exogenous Mg(II), Zn(II), and Co(II) increased activity. The enzyme was inhibited by inorganic phosphate, but not by molybdate and vanadate. Strong inhibitory effects were observed in the presence of thiol-reducing agents, although cysteine residues of the P. abyssi AP were not found to be incorporated within intra- or interchain disulfide bonds. In addition, P. abyssi AP was demonstrated to dephosphorylate linear DNA fragments with dephosphorylation efficiencies of 93.8 and 84.1% with regard to cohesive and blunt ends, respectively.  相似文献   

4.
An extracellular alkaline metalloprotease (MprI) from Alteromonas sp. strain O-7 was purified and characterized. The molecular mass of the purified enzyme was estimated to be 56 kDa by SDS-PAGE. The optimum pH and temperature were pH 10.0 and 60 degrees C, respectively. The gene (mprI) encoding MprI was cloned and its nucleotide sequence was analyzed. The deduced amino acid sequence of MprI showed significant similarity to metalloproteases classified into the thermolysin family. Furthermore, sequence analysis showed that another metalloprotease (MprII)-encoding gene was located downstream from mprI. The deduced amino acid sequence of MprII showed high similarity to metalloproteases of the aminopeptidase family. Similar repeated C-terminal extensions were found in both MprI and MprII.  相似文献   

5.
A psychrotrophic bacterium producing a cold-adapted lipase was isolated from the deep-sea sediment of Prydz Bay, Antarctic and identified as a Pseudomonas strain. Determination of the nucleotide sequence of the gene encoding a lipase from Pseudomonas sp. 7323 (lipA) revealed that LipA is composed of 617 amino acid residues with a calculated molecular weight of 64,466 Da. LipA has a GXSXG motif, which is conserved in lipases/esterases and generally contains the active-site serine. The lipase purified from the Escherichia coli transformant (rLipA) by metal-chelating chromatography exhibited the same electrophoretic mobility as did the wild-type lipase (wLipA) purified from strain 7323, and both enzymes were quite similar in physicochemical properties. The optimal temperature and pH value for the lipases activity were 30 degrees C and 9.0, respectively. They were unstable at temperatures above 25 degrees C and only retained half of their highest activity after incubation at 60 degrees C for 5 min. These results indicated that the enzymes were typical alkaline cold-adapted enzymes. Both enzymes were particularly activated by Ca(2+). Additionally, the enzymes hydrolyzed p-nitrophenyl caprate and tributyrin at the highest velocity among the other p-nitrophenyl esters and triglycerides.  相似文献   

6.
The psychrophilic alkaline metalloprotease (PAP) produced by a Pseudomonas bacterium isolated in Antarctica belongs to the clan of metzincins, for which a zinc ion is essential for catalytic activity. Binding studies in the crystalline state have been performed by X-ray crystallography in order to improve the understanding of the role of the zinc and calcium ions bound to this protease. Cocrystallization and soaking experiments with EDTA in a concentration range from 1 to 85 mM have resulted in five three-dimensional structures with a distinct number of metal ions occupying the ion-binding sites. Evolution of the structural changes observed in the vicinity of each cation-binding site has been studied as a function of the concentration of EDTA, as well as of time, in the presence of the chelator. Among others, we have found that the catalytic zinc ion was the first ion to be chelated, ahead of a weakly bound calcium ion (Ca 700) exclusive to the psychrophilic enzyme. Upon removal of the catalytic zinc ion, the side chains of the active-site residues His-173, His-179 and Tyr-209 shifted approximately 4, 1.0, and 1.6 A, respectively. Our studies confirm and also explain the sensitivity of PAP toward moderate EDTA concentrations and propose distinct roles for the calcium ions. A new crystal form of native PAP validates our previous predictions regarding the adaptation of this enzyme to cold environments as well as the proteolytic domain calcium ion being exclusive for PAP independent of crystallization conditions.  相似文献   

7.
A protease-producing bacterium was isolated and identified as Pseudomonas aeruginosa MN7. The strain was found to produce proteases when it was grown in media containing only shrimp waste powder (SWP), indicating that it can obtain its carbon, nitrogen, and salts requirements directly from shrimp waste. The use of 60 g/l SWP resulted in a high protease production. Elastase, the major protease produced by P. aeruginosa MN7, was purified from the culture supernatant to homogeneity using acetone precipitation, Sephadex G-75 gel filtration, and ultrafiltration using a 10-kDa cut-off membrane, with a 5.2-fold increase in specific activity and 38.4% recovery. The molecular weight of the purified elastase was estimated to be 34 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The optimum temperature and pH for protease activity were 60 degrees C and 8.0, respectively. The activity of the enzyme was totally lost in the presence of ethylene glycol tetraacetic acid, suggesting that the purified enzyme is a metalloprotease. The purified enzyme was highly stable in the presence of organic solvents, retaining 100% of its initial activity after 60 days of incubation at 30 degrees C in the presence of dimethyl sulfoxide and methanol. The lasB gene, encoding the MN7 elastase, was isolated and its DNA sequence was determined.  相似文献   

8.
A fibrinolytic metalloprotease has been purified from the fruiting bodies of the edible honey mushroom (Armillariella mellea). The enzyme has a molecular weight of 18538.1508, as measured by MALDI-TOF mass spectrometry and includes Zn2+ ion as found by ICP/MS. The N-terminal amino acid sequence, XXYNGXTXSRQTTLV, do not match any known protein or open reading frame. It hydrolyzes fibrinogen as well as fibrin, but does not show any proteolytic activity for other blood proteins such as thrombin, human albumin, bovine albumin, human IgG, hemoglobin, or urokinase. This protease hydrolyzes both A alpha and B beta subunits of human fibrinogen with equal efficiency. The enzyme activity was strongly inhibited by EDTA and 1,10-phenanthroline, indicating that the enzyme is a metalloprotease. No inhibition was found with PMSF, E-64, pepstatin, and 2-mercaptoethanol. The activity of the purified enzyme was slightly increased by Mg2+, Zn2+, and Co2+, but the enzyme was totally inhibited by Hg2+. It has broad substrate specificity for synthetic peptides, and a pH optimum at 7, suggested that the purified enzyme was a neutral protease. It was thermally stable up to 60 degrees C and the maximum fibrinolytic activity was at 55 degrees C.  相似文献   

9.
The gene encoding the secreted 53-kDa metalloprotease (protease B) and the 5' end of the gene encoding the secreted 55-kDa metalloprotease (protease C) of the Gram-negative bacterium Erwinia chrysanthemi have been sequenced. The predicted sequences of the two proteases do not have typical signal sequences at their NH2 termini. Both proteases are synthesized as inactive higher molecular weight precursors (zymogens proB and proC) which are secreted into the external medium where divalent cation-mediated activation occurs. The activation of proB occurs with a t1/2 of less than 5 min at 37 degrees C in Luria broth medium, whereas that of proC occurs with a t1/2 of about 150 min. The NH2 termini of purified proteases B, proB, and C were sequenced. ProB starts at the initiator methionine whereas B and C start, respectively, at residues +16 and +18 of the sequence deduced from the nucleotide sequence. A short NH2-terminal extension is therefore removed during the activation process, most likely by an autocatalytic mechanism. Protease B shows a high degree of sequence homology with the secreted 50-kDa metalloprotease of Serratia marcescens, which also lacks a signal peptide and for which an inactive higher molecular weight form has been reported.  相似文献   

10.
An alkaline protease produced by Pseudomonas aeruginosa MN1, isolated from an alkaline tannery waste water, was purified and characterized. The enzyme was purified 25-fold by gel filtration and ion exchange chromatography to a specific activity of 82350 U mg−1. The molecular weight of the enzyme was estimated to be 32000 daltons. The optimum pH and temperature for the proteolytic activity were pH 8.00 and 60°C, respectively. Enzyme activity was inhibited by EDTA suggesting that the preparation contains a metalloprotease. Enzyme activity was strongly inhibited by Zn2+, Cu2+ and Hg2+(5 mM), while Ca2+ and Mn2+ resulted in partial inhibition. The enzyme is different from other Pseudomonas aeruginosa alkaline proteases in its stability at high temperature; it retained more than 90% and 66% of the initial activity after 15 and 120 min incubation at 60°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 291–295. Received 09 June 1999/ Accepted in revised form 24 January 2000  相似文献   

11.
The extracellular zinc metalloprotease from Vibrio parahaemolyticus (VPM) is a putative virulence factor for host infection. It is synthesized from the vpm gene of V. parahaemolyticus as a polypeptide of 814 amino acids with an estimated molecular mass of 89,833 Da, containing a zinc metalloprotease HEXXH consensus motif. To investigate the enzymatic properties of V. parahaemolyticus metalloprotease, the mature vpm gene was overexpressed in Escherichia coli, and the recombinant protein (rVPM) was purified by a His-binding metal affinity column (>95% purity). The activity of the recombinant protease produced in E. coli was examined by gelatin activity staining and proteolytic activity assays using gelatin and azocasein as substrates. rVPM showed maximum activity at about 37 degrees C and pH 8. The cytotoxicity against flounder gill cells and fish pathogenicity indicated a potential role in pathogenesis.  相似文献   

12.
A lysine aminopeptidase was purified from the yeast Kluyveromyces marxianus. This enzyme was purified 100-fold from a soluble extract obtained at 100,000g. The purification procedure consisted in fractionated precipitation with ammonium sulfate and five chromatography steps. The native enzyme had a molecular mass of 46 kDa assessed through gel filtration. This aminopeptidase depicted an optimal pH of 7.0 and was stable at a pH range of 4-8, its optimal temperature was 45 degrees C and the enzyme became unstable at temperatures above 55 degrees C. The isoelectric point of the purified enzyme was 4.4. Michaelis constant and Vmax for L-lysine-p-nitroanilide were 0.33 mM and 2.2 mM min(-1) per milligram of protein, respectively. The enzyme was strongly inhibited by bestatin, o-phenanthroline and, to a lesser extent, by EDTA, suggesting that this enzyme is a metalloprotease. Our results suggest that the lysine aminopeptidase from Kluyveromyces marxianus might be of biotechnological relevance.  相似文献   

13.
U Baumann  S Wu  K M Flaherty    D B McKay 《The EMBO journal》1993,12(9):3357-3364
The three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa, a zinc metalloprotease, has been solved to a resolution of 1.64 A by multiple isomorphous replacement and non-crystallographic symmetry averaging between different crystal forms. The molecule is elongated with overall dimensions of 90 x 35 x 25 A; it has two distinct structural domains. The N-terminal domain is the proteolytic domain; it has an overall tertiary fold and active site zinc ligation similar to that of astacin, a metalloprotease isolated from a European freshwater crayfish. The C-terminal domain consists of a 21-strand beta sandwich. Within this domain is a novel 'parallel beta roll' structure in which successive beta strands are wound in a right-handed spiral, and in which Ca2+ ions are bound within the turns between strands by a repeated GGXGXD sequence motif, a motif that is found in a diverse group of proteins secreted by Gram-negative bacteria.  相似文献   

14.
G A Rufo  Jr  B J Sullivan  A Sloma    J Pero 《Journal of bacteriology》1990,172(2):1019-1023
We have isolated and characterized two minor extracellular proteases from culture supernatants of a strain of Bacillus subtilis containing deletion mutations of the genes for the extracellular proteases subtilisin (apr) and neutral protease (npr) and a minor extracellular protease (epr) as well as intracellular serine protease-I (isp-1). Characterization studies have revealed that one of these enzymes is the previously described protease bacillopeptidase F. The second enzyme, the subject of this report, is a novel metalloprotease, which we designate Mpr. Mpr is a unique metalloprotease that has been purified to apparent homogeneity by using both conventional and high-performance liquid chromatography procedures. Mpr has a molecular mass of approximately 28 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a basic isoelectric point of 8.7. The enzyme showed maximal activity against azocoll at pH 7.5 and 50 degrees C. Mpr was inhibited by dithiothreitol and a combination of beta-mercaptoethanol and EDTA. Activity was moderately inhibited by beta-mercaptoethanol and EDTA alone as well as by cysteine and citrate and only marginally by phosphoramidon 1,10-phenanthroline and N-[N-(L-3-trans-carboxyoxiran-2-carbonyl)-L-leucyl]-agmatine. Mpr was not inhibited by phenylmethylsulfonyl fluoride. In addition, Mpr showed esterolytic but not collagenolytic activities. Our studies suggest that Mpr is a secreted metalloprotease containing cysteine residues that are required for maximal activity.  相似文献   

15.
Two proteins, alkaline phosphatase (AP) and cytochrome c (cyt c) which seem to be involved in the apoptotic cell death program were examined on their interaction. Intestinal AP affects ferricytochrome c (cyt c(FeIII)) by changing its optical properties, redox state and conformation. The effect proceeded over the course of hours with a gradual decrease in free cyt c(FeIII) as the AP concentration increased. A heme containing high molecular species was created in the first stage of interaction of the proteins in neutral, acidic (pH 2.6), alkaline (pH 8.3), low ionic strength (10 mmol/l phosphate), and high ionic strength (0.5 mol/l NaCl) media. Further complexation was favored by higher pH values and temperature. Differential scanning calorimetry revealed a decrease in enthalpy of the thermodenaturation temperature (Tm) of cyt c at 84.5 degrees C due to the AP addition. Increments of AP in the mixtures resulted in the appearance of Tm peaks at 68 degrees C and 61 degrees C. Electrophoretic analysis of the commercial samples of intestinal APs showed main fractions from 63.2 kDa to 72.9 kDa and from 172.9 up to 179.0 kDa. Changes in positions and intensities of the bands were detected upon longer incubation (24 h) with cyt c. The electrophoretic pattern of the bacterial AP was homogeneous with one fraction of 43.7 kDa showing no alteration due to the cyt c presence. Gel permeation chromatography of incubated mixtures of intestinal APs and cyt c confirmed the creation of new heme containing complexes.  相似文献   

16.
Lipase (triacylglycerol lipase, EC 3.1.1.3) has been purified from Pseudomonas fluorescens wild strain by chromatography on DEAE-cellulose and octyl-Sepharose CL-4B. The yield was 21% and the specific activity of the purified enzyme 4780 U/mg protein. It showed a Mr of about 45 x 10(4) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is active over a wide pH range and at 50-55 degrees C.  相似文献   

17.
We have cloned the gene for polyphosphate:AMP phosphotransferase (PAP), the enzyme that catalyzes phosphorylation of AMP to ADP at the expense of polyphosphate [poly(P)] in Acinetobacter johnsonii 210A. A genomic DNA library was constructed in Escherichia coli, and crude lysates of about 6,000 clones were screened for PAP activity. PAP activity was evaluated by measuring ATP produced by the coupled reactions of PAP and purified E. coli poly(P) kinases (PPKs). In this coupled reaction, PAP produces ADP from poly(P) and AMP, and the resulting ADP is converted to ATP by PPK. The isolated pap gene (1,428 bp) encodes a protein of 475 amino acids with a molecular mass of 55.8 kDa. The C-terminal region of PAP is highly homologous with PPK2 homologs isolated from Pseudomonas aeruginosa PAO1. Two putative phosphate-binding motifs (P-loops) were also identified. The purified PAP enzyme had not only strong PAP activity but also poly(P)-dependent nucleoside monophosphate kinase activity, by which it converted ribonucleoside monophosphates and deoxyribonucleoside monophosphates to ribonucleoside diphosphates and deoxyribonucleoside diphosphates, respectively. The activity for AMP was about 10 times greater than that for GMP and 770 and about 1,100 times greater than that for UMP and CMP.  相似文献   

18.
An endonuclease specific for apurinic, apyrimidinic (AP) sites in DNA was purified nearly to homogeneity from the extremely thermophilic bacterium Thermothrix thiopara. The enzyme has a molecular weight of approximately 26,000. It cleaves neither native nor UV- or gamma-irradiated DNAs and has no contaminating exonuclease or uracil-DNA glycosylase activities. The enzyme has no cofactor requirement and is not inhibited by EDTA or N'-ethylmaleimide. It shows maximal activity at 70 degrees C and a pH between 7.5 and 9.0. The Arrhenius activation energy of the reaction is 17 kJ/mol, and the apparent Km for AP sites is 38 nM. The rate of heat inactivation of the enzyme followed first-order kinetics, with a half-life of 10 min at 70 degrees C but about 150 min in the presence of 0.5 M ammonium sulfate or 0.5 mg of bovine serum albumin per ml at the same temperature. One cell of T. thiopara contains sufficient AP endonuclease activity for hydrolysis of about 10(6) phosphodiester bonds per h at 70 degrees C. An extract of these bacteria does not contain detectable Mg-dependent AP endonuclease activity, and the above-mentioned enzyme appears to be the main AP endonuclease of T. thiopara.  相似文献   

19.
A Streptomyces sp., which produces an alkaline protease inhibitor (API) exhibiting antifungal activity has been isolated from soil. The protein has been purified to homogeneity. The molecular characterization has revealed that it is a dimer (M(r) 28 kDa) with five disulphide linkages and has a pI of 3.8. API is a competitive type of inhibitor with a K(i) value of 2.5 x 10(-9) M. The inhibitor is stable over a pH range of 6 to 12 and a temperature range of 40 to 95 degrees C. API exhibits antifungal activity (in vitro) against phytopathogenic fungi such as Fusarium, Alternaria, and Rhizoctonia and also against Trichoderma, a saprophytic fungus. The antifungal activity of API appears to be associated with its ability to inhibit the fungal serine alkaline protease(s), which is indispensable for its growth. Retardation of the rate of fungal spore germination, as well as hyphal extention, was observed in the presence of API. Both the protease inhibitory and the antifungal activity were abolished on treatment of API with DTT (5 mM), suggestive of a common site for both the activities. This is the first report on API as a potential biocontrol agent against phytopathogenic fungi.  相似文献   

20.
Xenorhabdus nematophila, a bacterium pathogenic for insects associated with the nematode Steinernema carpocapsae, releases high quantities of proteases, which may participate in the virulence against insects. Zymogram assays and cross-reactions of antibodies suggested that two distinct proteases were present. The major one, protease II, was purified and shown to have a molecular mass of 60 kDa and an estimated isoelectric point of 8.5. Protease II digested the chromogenic substrate N-tosyl-Gly-Pro-Arg-paranitroanilide (pNA) with V(max) and K(m) values of 0.0551 microM/min and 234 microM, respectively, and the substrate DL-Val-Leu-Arg-pNA with V(max) and K(m) values of 0.3830 microM/min and 429 microM, respectively. Protease II activity was inhibited 93% by Pefabloc SC and 45% by chymostatin. The optimum pH for protease II was 7, and the optimum temperature was 23C. Proteolytic activity was reduced by 90% at 60 degrees C for 10 min. Sequence analysis was performed on four internal peptides that resulted from the digestion of protease II. Fragments 29 and 45 are 75 and 68% identical to alkaline metalloproteinase produced by Pseudomonas aeruginosa. Fragment 29 is 79% identical to a metalloprotease of Erwinia amylovora and 75% identical to the protease C precursor of Erwinia chrysanthemi. Protease II showed no toxicity to hemocytes but destroyed antibacterial activity on the hemolymph of inoculated insects' larvae and reduced 97% of the cecropin A bacteriolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号