共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic glycerophosphates and their deoxy analogs were previously found to induce intracellular tyrosine and threonine phosphorylation in Chinese hamster ovary (CHO) cells. Further studies have indicated that these compounds induce neuronal outgrowth in PC-12 cells, as well as elevation of the state of cellular differentiation in human breast cancer cell lines. The mechanism by which these cyclic phosphates operate is not yet fully delineated. Using an affinity labeling approach we probed for possible cyclic phosphate target proteins in CHO cells. A 170 kDa protein that was labeled by an affinity cyclic phosphate reagent was identified by mass spectrometry as the largest subunit of the eukaryotic initiation factor 3 (eIF3). Using In-Gel kinase assays allowed the detection of a approximately 70 kDa target kinase directly activated by cyclic phosphates. Identification of these proteins may provide a basis for deciphering the mechanisms, by which cyclic phosphates exert their effects. 相似文献
2.
3.
Zubarev RA Nielsen ML Fung EM Savitski MM Kel-Margoulis O Wingender E Kel A 《Journal of Proteomics》2008,71(1):89-96
The availability of the results of high-throughput analyses coming from ‘omic’ technologies has been one of the major driving forces of pathway biology. Analytical pathway biology strives to design a ‘pathway search engine’, where the input is the ‘omic’ data and the output is the list of activated or dominant pathways in a given sample. Here we describe the first attempt to design and validate such a pathway search engine using as input expression proteomics data. The engine represents a specific workflow in computational tools developed originally for mRNA analysis (BMC Bioinformatics 2006, 7 (Suppl 2), S13). Using our own datasets as well as data from recent proteomics literature we demonstrate that different dominant pathways (EGF, TGFβ, stress, and Fas pathways) can be correctly identified even from limited datasets. Pathway search engines can find application in a variety of proteomics-related fields, from fundamental molecular biology to search for novel types of disease biomarkers. 相似文献
4.
5.
Xiong Q Zhong Q Zhang J Yang M Li C Zheng P Bi LJ Ge F 《Journal of proteome research》2012,11(4):2078-2090
Substantial evidence indicates that microRNA-21 (miR-21) is a key oncomiR in carcinogenesis and is significantly elevated in multiple myeloma (MM). In this study, we explored the role of miR-21 in human MM cells and searched for miR-21 targets. By knocking down the expression of endogenous miR-21 in U266 myeloma cells, we observed reduced growth, an arrested cell cycle, and increased apoptosis. To further understand its molecular mechanism in the pathogenesis of MM, we employed a SILAC (stable isotope labeling by amino acids in cell culture)-based quantitative proteomic strategy to systematically identify potential targets of miR-21. In total, we found that the expression of 178 proteins was up-regulated significantly by miR-21 inhibition, implying that they could be potential targets of miR-21. Among these, the protein inhibitor of activated STAT3 (PIAS3) was confirmed as a direct miR-21 target by Western blotting and reporter gene assays. We further demonstrated that miR-21 enhances the STAT3-dependent signal pathway by inhibiting the function of PIAS3 and that down-regulation of PIAS3 contributes to the oncogenic function of miR-21. This elucidation of the role of PIAS3 in the miR-21-STAT3 positive regulatory loop not only may shed light on the molecular basis of the biological effects of miR-21 observed in MM cells but also has direct implications for the development of novel anti-MM therapeutic strategies. 相似文献
6.
Kang HJ Yoon TS Jeong DG Kim Y Chung JW Ha JS Park SS Ryu SE Kim S Bae KH Chung SJ 《Journal of microbiology and biotechnology》2008,18(8):1427-1430
Decursinol, found in the roots of Angelica gigas Nakai, has been traditionally used to treat anemia and other various diseases. Recently, numerous biological activities such as cytotoxic effect on leukemia cells, and antitumor, neuroprotection, and antibacterial activities have been reported for this compound. Although a number of proteins including protein kinase C, androgen receptor, and acetylcholinesterase were proposed as molecular targets responsible for the activities of decursinol, they are not enough to explain such a diverse biological activity mentioned above. In this study, we employed a chemical proteomic approach, leading to identification of seven proteins as potential proteins interacting with decursinol. Most of the proteins contain a defined ATP or nucleic acid binding domain and have been implied to be involved in the pathogenesis and progression of various human diseases including cancer, autoimmune disorders, or neurodegenerative diseases. The present results may provide clues to understand the molecular mechanism of the biological activities shown by decursinol, an anticancer natural product. 相似文献
7.
The determination of possible biomarkers in nasal secretion of healthy subjects can have a role in early diagnosis of diseases such as rhinosinusitis. For this purpose, nasal lavage fluids (NLFs) from ten volunteers, collected before and after they had been submitted to nasal provocations, were investigated. Separation and analysis of proteins present in this complex matrix was performed using a capillary liquid chromatography-electrospray-quadrupole-time of flight mass spectrometry equipment. From among a total of 111 proteins found (89 known and two unknown proteins), 42 of which had never been previously described in this fluid, such as Deleted in Malignant Brain Tumors 1 isoform a precursors, and cytoskeletal proteins were identified with high statistical score. Three proteins of palate lung nasal epithelial clone (PLUNC) family: SPLUNC1, LPLUNC1, and LPLUNC2 were identified. Proteins involved in innate (27%) and acquired immunity (21%) systems were major components of NLF. Cellular (52% of all proteins identified) such as cytoskeletal (33%), functional (15%), and regulatory (4%) proteins, normally present in the nasal cavity, have also been identified. The proteomic approach presented here allowed us to identify the proteins involved in acquired and innate immune response in the nose against microbial infections and unclean inhaled air. 相似文献
8.
《Molecular cell》2021,81(21):4552-4567.e8
9.
10.
11.
GYF domains are conserved eukaryotic adaptor domains that recognize proline-rich sequences. Although the structure and function of the prototypic GYF domain from the human CD2BP2 protein have been characterized in detail, very little is known about GYF domains from other proteins and species. Here we describe the binding properties of four GYF domains of various origins. Phage display in combination with SPOT analysis revealed the PPG(F/I/L/M/V) motif as a general recognition signature. Based on these results, the proteomes of human, yeast, and Arabidopsis thaliana were searched for potential interaction sites. Binding of several candidate proteins was confirmed by pull-down experiments or yeast two-hybrid analysis. The binding epitope of the GYF domain from the yeast SMY2 protein was mapped by NMR spectroscopy and led to a structural model that accounts for the different binding properties of SMY2-type GYF domains and the CD2BP2-GYF domain. 相似文献
12.
《Cell cycle (Georgetown, Tex.)》2013,12(13):2452-2457
Cancer lethality is mainly caused by metastasis. Therefore, understanding the nature of the genes involved in this process has become a priority. Given the heterogeneity of mutations in cancer cells, considerable focus has been directed toward characterizing metastasis genes in the context of relevant signaling pathways rather than treating genes as independent and equal entities. One signaling cascade implicated in the regulation of cell growth, invasion and metastasis is the MAP kinase pathway. Raf kinase inhibitory protein (RKIP) functions as an inhibitor of the MAP kinase pathway and is a metastasis suppressor in different cancer models. By utilizing statistical analysis of clinical data integrated with experimental validation, we recently identified components of the RKIP signaling pathway relevant to breast cancer metastasis. Using the RKIP pathway as an example, we show how prior biological knowledge can be efficiently combined with genome-wide patient data to identify gene regulatory mechanisms that control metastasis. 相似文献
13.
Andy J. Minn Elena Bevilacqua Jieun Yun Marsha Rich Rosner 《Cell cycle (Georgetown, Tex.)》2012,11(13):2452-2457
Cancer lethality is mainly caused by metastasis. Therefore, understanding the nature of the genes involved in this process has become a priority. Given the heterogeneity of mutations in cancer cells, considerable focus has been directed toward characterizing metastasis genes in the context of relevant signaling pathways rather than treating genes as independent and equal entities. One signaling cascade implicated in the regulation of cell growth, invasion and metastasis is the MAP kinase pathway. Raf kinase inhibitory protein (RKIP) functions as an inhibitor of the MAP kinase pathway and is a metastasis suppressor in different cancer models. By utilizing statistical analysis of clinical data integrated with experimental validation, we recently identified components of the RKIP signaling pathway relevant to breast cancer metastasis. Using the RKIP pathway as an example, we show how prior biological knowledge can be efficiently combined with genome-wide patient data to identify gene regulatory mechanisms that control metastasis. 相似文献
14.
Zhou T Liang B Su GY Gong WL Li HY Tian LF He K Zhao J Man JH Li T Li WH Zhang ZY Wang CH Li AL Liu H Pan X Zhang PJ Jin BF Zhang XM 《Journal of proteome research》2007,6(11):4397-4406
A global understanding of ubiquitinated proteins in vivo is key to unraveling the biological significance of ubiquitination. There are, however, a few effective screening methods for rapid analysis of ubiquitinated proteins. In the current study, we designed a cell-based cDNA expression array combined with cell imaging for the rapid identification of polyubiquitinated proteins, which normally accumulate to form the unique "dot" structure following inhibition of ubiquitin proteasomes. The array consisted of 112 cDNAs encoding key components of major cellular pathways and potential targets of polyubiquitination. Among them, 40 proteins formed accumulation dots in response to proteasome inhibitor, MG-132, treatment. More importantly, 24 of those 40 proteins, such as MAPKAPK3, NLK, and RhoGDI2, are previously not known as the targets of ubiquitin. We further validated our findings by examining the endogenous counterparts of some of these proteins and found that those endogenous proteins form a similar "dot" structure. Immunoprecipitation assays confirmed that these accumulated proteins are polyubiquitinated. Our results demonstrate that this large-scale application of cell-based arrays represents a novel global approach in identifying candidates of the polyubiquitinated proteins. Therefore, the technique utilized here will facilitate future research on ubiquitination-regulated cell signaling. 相似文献
15.
Takeuchi T Inoue S Yokosawa H 《Biochemical and biophysical research communications》2006,348(2):473-477
ISG15, a protein containing two ubiquitin-like domains, is an interferon-stimulated gene product that functions in antiviral response and is conjugated to various cellular proteins (ISGylation) upon interferon stimulation. ISGylation occurs via a pathway similar to the pathway for ubiquitination that requires the sequential action of E1/E2/E3: the E1 (UBE1L), E2 (UbcH8), and E3 (Efp/Herc5) enzymes for ISGylation have been hitherto identified. In this study, we identified six novel candidate target proteins for ISGylation by a proteomic approach. Four candidate target proteins were demonstrated to be ISGylated in UBE1L- and UbcH8-dependent manners, and ISGylation of the respective target proteins was stimulated by Herc5. In addition, Herc5 was capable of binding with the respective target proteins. Thus, these results suggest that Herc5 functions as a general E3 ligase for protein ISGylation. 相似文献
16.
Frederik Gwinner Adelina E Acosta‐Martin Ludovic Boytard Maggy Chwastyniak Olivia Beseme Hervé Drobecq Sophie Duban‐Deweer Francis Juthier Brigitte Jude Philippe Amouyel Florence Pinet Benno Schwikowski 《Proteomics》2013,13(7):1065-1076
In this study, we developed a novel computational approach based on protein–protein interaction networks to identify a list of proteins that might have remained undetected in differential proteomic profiling experiments. We tested our computational approach on two sets of human smooth muscle cell protein extracts that were affected differently by DNase I treatment. Differential proteomic analysis by saturation DIGE resulted in the identification of 41 human proteins. The application of our approach to these 41 input proteins consisted of four steps: (i) Compilation of a human protein–protein interaction network from public databases; (ii) calculation of interaction scores based on functional similarity; (iii) determination of a set of candidate proteins that are needed to efficiently and confidently connect the 41 input proteins; and (iv) ranking of the resulting 25 candidate proteins. Two of the three highest‐ranked proteins, beta‐arrestin 1, and beta‐arrestin 2, were experimentally tested, revealing that their abundance levels in human smooth muscle cell samples were indeed affected by DNase I treatment. These proteins had not been detected during the experimental proteomic analysis. Our study suggests that our computational approach may represent a simple, universal, and cost‐effective means to identify additional proteins that remain elusive for current 2D gel‐based proteomic profiling techniques. 相似文献
17.
Identification of novel surface proteins of Anaplasma phagocytophilum by affinity purification and proteomics 下载免费PDF全文
Anaplasma phagocytophilum is the etiologic agent of human granulocytic anaplasmosis (HGA), one of the major tick-borne zoonoses in the United States. The surface of A. phagocytophilum plays a crucial role in subverting the hostile host cell environment. However, except for the P44/Msp2 outer membrane protein family, the surface components of A. phagocytophilum are largely unknown. To identify the major surface proteins of A. phagocytophilum, a membrane-impermeable, cleavable biotin reagent, sulfosuccinimidyl-2-[biotinamido]ethyl-1,3-dithiopropionate (Sulfo-NHS-SS-Biotin), was used to label intact bacteria. The biotinylated bacterial surface proteins were isolated by streptavidin agarose affinity purification and then separated by electrophoresis, followed by capillary liquid chromatography-nanospray tandem mass spectrometry analysis. Among the major proteins captured by affinity purification were five A. phagocytophilum proteins, Omp85, hypothetical proteins APH_0404 (designated Asp62) and APH_0405 (designated Asp55), P44 family proteins, and Omp-1A. The surface exposure of Asp62 and Asp55 was verified by immunofluorescence microscopy. Recombinant Asp62 and Asp55 proteins were recognized by an HGA patient serum. Anti-Asp62 and anti-Asp55 peptide sera partially neutralized A. phagocytophilum infection of HL-60 cells in vitro. We found that the Asp62 and Asp55 genes were cotranscribed and conserved among members of the family Anaplasmataceae. With the exception of P44-18, all of the proteins were newly revealed major surface-exposed proteins whose study should facilitate understanding the interaction between A. phagocytophilum and the host. These proteins may serve as targets for development of chemotherapy, diagnostics, and vaccines. 相似文献
18.
Qian Zhang Jiaxiang Wang Rui Dong Shaobo Yang Shu Zheng 《Molecular biology reports》2011,38(1):631-638
To screen and identify serum biomarkers for nephroblastoma in children using surface-enhanced laser desorption/ionization (SELDI) and other proteomics technologies. The surface-enhanced laser desorption/ionization time of flight mass spectrometry (SELDI–TOF-MS) was used to identify biomarkers in 100 children with nephroblastoma and 30 gender and age-matched normal healthy children. There were 30 cases of pre-operative patients and 70 cases of post-operative patients. Differentially expressed serum proteins were screened. The target proteins were then separated, purified, and analyzed by multidimensional high performance liquid chromatography (HPLC). The peptide mass fingerprints (PMFs) of each protein were obtained after scanning with LC-MS/MS (LTQ). The proteins were identified using SEQUEST and the biological functions and characterizations of these proteins were analyzed with bioinformatic methods. Two differential proteins (m/z 6455.5, 9190.8) were obtained. According to SEQUEST, the molecular masses of this two proteins indicated that they were apolipoprotein C-I and haptoglobin, respectively. Expressions of the two proteins were lower in the pre-surgery group compared with the post-surgery and control group (P < 0.01). In contrast, the expression of this two proteins were higher in the early stage than in the advanced stage of nephroblastoma. Apolipoprotein C-I and haptoglobin may be used as potential biomarkers to predict the degree of malignancy, therapeutic outcomes, and prognosis of nephroblastoma in children. 相似文献
19.
Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry 总被引:20,自引:0,他引:20
Lewis TS Hunt JB Aveline LD Jonscher KR Louie DF Yeh JM Nahreini TS Resing KA Ahn NG 《Molecular cell》2000,6(6):1343-1354
Functional proteomics provides a powerful method for monitoring global molecular responses following activation of signal transduction pathways, reporting altered protein posttranslational modification and expression. Here we combine functional proteomics with selective activation and inhibition of MKK1/2, in order to identify cellular targets regulated by the MKK/ERK cascade. Twenty-five targets of this signaling pathway were identified, of which only five were previously characterized as MKK/ERK effectors. The remaining targets suggest novel roles for this signaling cascade in cellular processes of nuclear transport, nucleotide excision repair, nucleosome assembly, membrane trafficking, and cytoskeletal regulation. This study represents an application of functional proteomics toward identifying regulated targets of a discrete signal transduction pathway and demonstrates the utility of this discovery-based strategy in elucidating novel MAP kinase pathway effectors. 相似文献
20.
Identification of membrane-associated proteins from Campylobacter jejuni strains using complementary proteomics technologies 总被引:1,自引:0,他引:1
Cordwell SJ Len AC Touma RG Scott NE Falconer L Jones D Connolly A Crossett B Djordjevic SP 《Proteomics》2008,8(1):122-139
Campylobacter jejuni is the leading cause of food- and water-borne illness world-wide. The membrane-associated proteome of a recent C. jejuni gastrointestinal isolate (JHH1) was generated by sodium carbonate precipitation and ultracentrifugation followed by 2-DE and MALDI-TOF MS as well as 2-DLC (strong cation exchange followed by RP chromatography) of trypsin digests coupled to MS/MS (2-DLC/MS/MS). 2-DE/MS identified 77 proteins, 44 of which were predicted membrane proteins, while 2-DLC/MS/MS identified 432 proteins, of which 206 were predicted to be membrane associated. A total of 453 unique proteins (27.4% of the C. jejuni theoretical proteome), including 187 bona fide membrane proteins were identified in this study. Membrane proteins were also compared between C. jejuni JHH1 and ATCC 700297 to identify factors potentially associated with increased gastrointestinal virulence. We identified 28 proteins that were significantly (>two-fold) more abundant in, or unique to, JHH1, including eight proteins involved in chemotaxis signal transduction and flagellar motility, the amino acid-binding surface antigens CjaA and CjaC, and four outer membrane proteins (OMPs) of unknown function (Cj0129c, Cj1031, Cj1279c, and Cj1721c). Immunoblotting using convalescent patient sera generated post-gastrointestinal infection revealed 13 (JHH1) and 12 (ATCC 700297) immunoreactive proteins. These included flagellin (FlaA) and CadF as well as Omp18, Omp50, Cj1721c, PEB1A, PEB2, and PEB4A. This study provides a comprehensive analysis of membrane-associated proteins from C. jejuni. 相似文献