首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Design Principles of the Non-smooth Surface of Bionic Plow Moldboard   总被引:8,自引:0,他引:8  
1 IntroductionTransferringbiologyfunctiontoengineeringtech nology[1] isaprominentprogressintechnologicalfields ,whichenrichesthecontentofTRIZsystematicmethod .Thenon smoothsurfacesofthetypicalsoilan imalshavetheeffectsofreducingsoiladhesion ,whichhasbeenconvincedandgraduallyaccepted .Thebionicplowmoldboardisanappliedexampleofimitatingthecharacteristicsofsoilanimals’surfaceappearancesandpracticingtheBionicTheoryofNon SmoothSurface(TNSS) .ThebasisofTNSSisnon smoothsurfaceef fects[2 ,3] …  相似文献   

2.
Scanning electron microscope and optical contact angle measuring instruments were used to investigate the microstructure and wettability of geometric non-smooth structure of dragonfly wing surface. Results show that the geometric non-smooth structure of dragonfly wing surface is one part of epicuticle, some organic solvents can effectively dissolve the main ingredient of non-smooth structure. The hydrophobicity of dragonfly wing surface is induced by the co-coupling of the non-smooth structure and the waxy layer covering.  相似文献   

3.
The cave pit non-smooth surface on the 3Cr2W8V die steel were processed by laser and the size and microstructure of the non-smooth units were studied. The wear-resistance and hardness of the 3Cr2W8V steel with non-smooth surface were measured. The results show that the wear-resistance characteristic is better if the distance between non-smooth units is smaller. The size (the depth, the width), the hardness and the microstructure of the units vary with the laser parameters. When the current intensity and the pulse duration increase, the microstructure of non-smooth unit becomes coarser for the increase in the width and volume, as a result, the hardness decreases and the wear-resistance improves. The wear-resistance of the non-smooth material under higher current intensity and longer pulse duration was found to be better in the experiments. The improved degree of wear-resistance lies in the combination of size, microstructure and hardness of non-smooth unit.  相似文献   

4.
There is an ever increasing need to find surfaces that are biocompatible for applications like medical implants and microfluidics-based cell culture systems. The biocompatibility of five different surfaces with different hydrophobicity was determined using gene expression profiling as well as more conventional methods to determine biocompatibility such as cellular growth rate, morphology and the hydrophobicity of the surfaces. HeLa cells grown on polymethylmethacrylate (PMMA) or a SU-8 surface treated with HNO3-ceric ammonium nitrate (HNO3-CAN) and ethanolamine showed no differences in growth rate, morphology or gene expression profiles as compared to HeLa cells grown in cell culture flasks. Cells grown on SU-8 treated with only HNO3-CAN showed almost the same growth rate (36 +/- 1 h) and similar morphology as cells grown in cell culture flasks (32 +/- 1 h), indicating good biocompatibility. However, more than 200 genes showed different expression levels in cells grown on SU-8 treated with HNO3-CAN compared to cells grown in cell culture flasks. This shows that gene expression profiling is a simple and precise method for determining differences in cells grown on different surfaces that are otherwise difficult to find using conventional methods. It is particularly noteworthy that no correlation was found between surface hydrophobicity and biocompatibility.  相似文献   

5.
Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves and insect wings,whichenhance the hydrophobicity of the natural surfaces and play a role of self-cleaning.We presented the fabrication technology of asuperhydrophobic surface using high energy ion beam.Artificial insect wings that mimic the morphology and the superhydrophobocityof cicada’s wings were successfully fabricated using argon and oxygen ion beam treatment on a polytetrafluoroethylene(PTFE)film.The wing structures were supported by carbon/epoxy fibers as artificial flexible veins that were bondedthrough an autoclave process.The morphology of the fabricated surface bears a strong resemblance to the wing surface of acicada,with contact angles greater than 160°,which could be sustained for more than two months.  相似文献   

6.
Laser multiple processing, i.e. laser surface texturing and then Laser Shock Processing (LSP), is a new surface processingtechnology for the preparation of bionic non-smooth surfaces. Based on engineering bionics, samples of bionic non-smoothsurfaces of stainless steel 0Crl 8Ni9 were manufactured in the form of reseau structure by laser multiple processing. The mechanicalproperties (including microhardness, residual stress, surface roughness) and microstructure of the samples treated bylaser multiple processing were compared with those of the samples without LSP The results show that the mechanical propertiesof these samples by laser multiple processing were clearly improved in comparison with those of the samples without LSP Themechanisms underlying the improved surface microhardness and surface residual stress were analyzed, and the relations betweenhardness, comnressive residual stress and roughness were also presented.  相似文献   

7.
Microorganisms are able to attach to, grow on, and ultimately form biofilms on a large variety of surfaces, such as industrial equipment, food contact surfaces, medical implants, prostheses and operating rooms. Once organized into biofilms, bacteria are difficult to remove and kill, which increases the risk of cross-contamination and infection. One way to address the problem may thus be to develop antibacterial, anti-adhesion, ‘easy cleaning’ surfaces. In this study, stainless steel (SS) surfaces with antibacterial properties were created by embedding several antimicrobial peptides in a multilayer film architecture. The biocidal effect of these surfaces was demonstrated against both Gram-positive and Gram-negative bacteria according to two ISO tests. Also, coating SS surfaces with either mucin or heparin led to a reduction of S. epidermidis adhesion of almost 95% vs the bare substratum. Finally, by combining both antibacterial and anti-adhesion biomolecules in the same multilayer film, SS surfaces with better cleanability were produced. This surface coating property may help to delay the buildup of a dead bacterial layer which is known to progressively reduce exposure of the coating, leading to an undesirable decrease in the antibacterial effect of the surface.  相似文献   

8.
The insertion of oat husk lignin onto chemithermomechanical pulp (CTMP) fibers was studied to increase fiber hydrophobicity. The pretreated pulp samples were subsequently used for preparation of handsheets for characterization. Treatment of CTMP with laccase in the presence of oat husk lignin resulted in a significant increase in hydrophobicity of the handsheet surface, as indicated by dynamic contact angle analysis. Water absorption time of 8 s was obtained with initial contact angle of 118°. Although the handsheet's brightness was reduced by 33%, tensile index was only subtly decreased. Neither laccase nor oat husk lignin alone gave much improved water absorption times. Therefore, handsheets made of laccase-treated pulp with and without oat husk lignin were further examined by XPS, which suggested that both laccase and oat husk lignin were inserted onto CTMP fibers. The oat husk lignin was distributed as heterogeneous aggregates on the handsheet surface whereas laccase was uniformly distributed. Evidence was obtained that the adsorbed laccase layer formed a noncovalent base for the insertion of oat husk lignin onto fiber surfaces.  相似文献   

9.
Superhydrophobic surfaces are often found in nature,such as plant leaves and insect wings.Inspired by superhydrophobic phenomenon of the rose petals and the lotus leaves,biomimetic hydrophobic surfaces with high or low adhesion were prepared with a facile drop-coating approach in this paper.Poly(vinyl alcohol) (PVA) was used as adhesive and SiO2 nanoparticles were used to fabricate surface micro-structure.Stearic acid or dodecafluoroheptyl-propyl-trimethoxysilane (DFTMS) were used as low surface energy materials to modify the prepared PVA/SiO2 coating surfaces.The effects of size of SiO2 nanoparticles,concentration of SiO2 nanoparticle suspensions and the modifications on the wettability of the surface were investigated.The morphology of the PVA/SiO2 coating surfaces was observed by using scanning electron microscope.Water contact angle of the obtained superhydrophilic surface could reach to 3°.Stearic acid modified PVA/SiO2 coating surfaces showed hydrophobicity with high adhesion.By mixing the SiO2 nanoparticles with sizes of 40 nm and 200 nm and modifying with DFTMS,water contact angle of the obtained coating surface could be up to 155° and slide angle was only 5°.This work provides a facile and useful method to control surface wettability through changing the roughness and chemical composition of a surface.  相似文献   

10.
The role of cell surface hydrophobicity in the adhesion to stainless steel (SS) of 11 wild yeast strains isolated from the ultrafiltration membranes of an apple juice processing plant was investigated. The isolated yeasts belonged to four species: Candida krusei (5 isolates), Candida tropicalis (2 isolates), Kluyveromyces marxianus (3 isolates) and Rhodotorula mucilaginosa (1 isolate). Surface hydrophobicity was measured by the microbial adhesion to solvents method. Yeast cells and surfaces were incubated in apple juice and temporal measurements of the numbers of adherent cells were made. Ten isolates showed moderate to high hydrophobicity and 1 strain was hydrophilic. The hydrophobicity expressed by the yeast surfaces correlated positively with the rate of adhesion of each strain. These results indicated that cell surface hydrophobicity governs the initial attachment of the studied yeast strains to SS surfaces common to apple juice processing plants.  相似文献   

11.
The objective of this study is to determine whether DNA signature recovery of Bacillus anthracis strains from different environmental substrates correlates with pathogen cell surface hydrophobicity and induction of host cell death. We compared recovery of DNA signatures from a panel of B. anthracis strains collected from two environmental substrates, non-porous surfaces and soil, using real-time qPCR. We further assessed both cell surface hydrophobicity of the B. anthracis strains by contact angle measurements and host cell viability in response to B. anthracis infection in a mouse macrophage cell model system. Our studies demonstrated correlation between reduced B. anthracis sample recovery from environmental substrates and increased cell surface hydrophobicity. Surprisingly, the most hydrophilic strain, K4596, which exhibited the highest level of recovery from the environmental surfaces, induced the highest level of host cell cytotoxicity compared to more hydrophobic B. anthracis strains in the panel. Our results suggest that cell surface hydrophobicity may play a leading role in mediating pathogen adherence to environmental surfaces. These findings can contribute to the optimization of pathogen detection efforts by understanding how bacterial parameters such as hydrophobicity and induction of host cell death affect bacterial adherence to environmental surfaces.  相似文献   

12.
Thirteen Salmonella enteritidis and S. typhimurium strains with smooth or rough colony morphology were investigated for their surface properties based on hemagglutination (HA), hydrophobicity, and fibronectin-binding profiles. The strains showed 5 different patterns of HA which was mannose-sensitive. The rough strains possessed comparatively greater number of fimbriae than the corresponding smooth strains and also attached to human intestinal cells in greater numbers. The Salmonella strains used in this study interacted with fibronectin and its 29-kDa N-terminal fragment to varied extents. These properties may be helpful in broadening the prospective interaction capabilities of Salmonella organisms with the host surfaces.  相似文献   

13.
The role of cell and surface hydrophobicity in the adherence of the waterborne bacterium Mycobacterium smegmatis to nanostructures and biofilm formation was investigated. Carbon nanostructures (CNs) were synthesized using a flame reactor and deposited on stainless steel grids and foils, and on silicon wafers that had different initial surface hydrophobicities. Surface hydrophobicity was measured as the contact angle of water droplets. The surfaces were incubated in suspensions of isogenic hydrophobic and hydrophilic strains of M. smegmatis and temporal measurements of the numbers of adherent cells were made. The hydrophobic, rough mutant of M. smegmatis adhered more readily and formed denser biofilms on all surfaces compared to its hydrophilic, smooth parent. Biofilm formation led to alterations in the hydrophobicity of the substratum surfaces, demonstrating that bacterial cells attached to CNs are capable of modifying the surface characteristics.  相似文献   

14.
Adhesion of bacillus spores in relation to hydrophobicity   总被引:4,自引:0,他引:4  
The adhesion of spores of five different Bacillus species to solid surfaces of different hydrophobicity was evaluated. The spore surface hydrophobicity was measured using hydrophobic interaction chromatography (HIC). A large variation in hydrophobicity was found among the spores of the different species tested. The degree of adhesion of spores to the solid surfaces was consistent with the results obtained using the HIC method. The most hydrophobic spores, according to the HIC method, adhered in a much larger extent to the hydrophobic surfaces. Furthermore, spores generally adhered to a greater extent to hydrophobic and hydrophilic surfaces than did the vegetative cells.  相似文献   

15.
Three types of rough surface were processed by laser irradiation on the 3Cr2W8V material hot-work die steel surface.The wear experiments with smooth surface and rough surface samples were repeated on the pin-tray wear machine. According to the wear results, we studied the regularity of wear resistance of different rough surface samples. The results indicated that bionic rough surface can improve the wear resistance of the material and the wear resistance can be increased 1 - 2 times, compared with the smooth surface. Also, the wear resistance of the rough surface was affected by laser current and duration of impulse. The bigger the laser current or the impulse duration, the better is the wear resistance. When the distance between the same kind of units which are distributed on the surfaces is changed, the wear resistance changes. The wear resistance of a bionic rough surface on which the grid units were distributed at spacing of 1 mm was the best. And we designed the wear models.  相似文献   

16.
Three biophysical techniques were employed to study the structure and thermal stability of a series of homologous bovine lens gamma-crystallins upon binding to three model surfaces. The surfaces in order of increasing hydrophobicity were silica, methyl silica, and diphenyl silica. Secondary structure was analyzed by deconvolution Fourier transform infrared spectroscopy, while tertiary structure alterations were probed by front surface fluorescence spectroscopy. The effect of surface binding on protein thermal stability was analyzed by fluorescence and differential scanning calorimetry. The comparison of free and surface-bound protein with variations in the electrostatic and hydrophobic character of both the protein and the adsorbent surface with these techniques demonstrated that: (i) destabilization on hydrophobic surfaces is greater than on a more hydrophilic interface, (ii) detectable conformational changes tend to increase as the hydrophobicity of the surface increases, and (iii) subtle structural differences among proteins can play an important role in determining differences in protein stability and structure upon surface adsorption.  相似文献   

17.
1IntroductionAdhesive forces exist between soil and the surfacesof soil-engaging components[1,2].Soil adhesion increasesthe running resistance and energy consumption,andaffects the operating quality.Soil adhesion also reducesthe working productivity of terrain machines,even worseit makes terrain machines fail to run.Reducing theadhesive force of the soil-engaging machines will have aprofound influence for cultivation.Through theinvestigation of soil animals,we have found that soilanimals poss…  相似文献   

18.
Adhesive forces exist between soil and the surfaces of soil-engaging components; they increase working resistance and energy consumption. This paper tries to find an approach to reduce the adhesion and resistance of bulldozing plate. A simplified mechanical model of adhesion and resistance between soil and a non-smooth bulldozing plate is proposed. The interaction force between moist soil and a non-smooth bulldozing plate is analyzed. The pressure and friction distribution on the bulldozing plate are computed, and the anti-adhesive effect of a corrugated bulldozing plate is simulated numerically. Numerical results show that the wavy bulldozing plate achieves an effective drag reduction in moist soil. The optimal wavy shape of the corrugated bulldozing plate with the minimal resistance is designed. The basic principle of reducing soil adhesion of the non-smooth surface is discovered.  相似文献   

19.
《Experimental mycology》1993,17(4):241-252
Terhune, B. T., and Hoch, A. C. 1993. Substrate hydrophobicity and adhesion of Uromyces urediospores and germlings. Experimental Mycology 17, 241-252. Adhesions of urediospores and urediospore germlings of Uromyces appendiculatus, the bean rust pathogen, to various substrata was evaluated with regard to surface wettability. A range of surface wettabilities, or conversely hydrophobicities, was obtained by coating glass or quartz substrates with various organosilanes. Adhesion of urediospores or germlings was evaluated after the spore or germling laden-silanized surfaces were washed. Both urediospores and germlings adhered most tenaciously to surfaces with wettability ratings less than 30. Such surfaces were polystyrene and glass treated with dimethyldichlorosilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichorosilane, and diphenyldichlorosilane. The degree of germling contact to the various surfaces correlated closely with hydrophobicity and with the adhesion of germlings. Induction of appressoria on quartz substrates bearing inductive topographies (0.5-μm-deep grooves) was also closely associated with the degree of hydrophobicity.  相似文献   

20.
Dalton HM  Stein J  March PE 《Biofouling》2000,15(1-3):83-94
Minimally adhesive polymers are being developed as potential coatings for use in the marine environment. A 'bioprobe', the bacterium Psychrobacter sp. strain SW5, was employed to detect heterogeneities in substratum hydrophobicity at a micrometer level, rather than the millimeter level detected by traditional contact angle measurements. This novel assay was based on substratum-induced shifts in bacterial morphology and was used to demonstrate that characteristics of these surfaces can be evaluated for maintenance of parameters such as low surface free energy as well as temporal stability when immersed in water. Immersion of developmental substrata in artificial seawater for up to 90d prior to testing with the bioprobe potentially affects the stability of the designed characteristics of the polymers. It is proposed that the shifts in cell and biofilm morphology results from changes influencing the surface hydrophobicity of the polymers. An unpredicted outcome of this testing was the detection of modifications to coatings inferred by the addition of filler particles. Exposure of coatings to the natural microbial community of seawater revealed colonization characteristics that substantiate the results obtained by using the bioindicator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号