首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
We have identified the N-terminus of adenovirus early region 1A (AdE1A) as a region that can regulate the 26S proteasome. Specifically, in vitro and in vivo co-precipitation studies have revealed that the 19S regulatory components of the proteasome, Sug1 (S8) and S4, bind through amino acids (aa) 4-25 of Ad5 E1A. In vivo expression of wild-type (wt) AdE1A, in contrast to the N-terminal AdE1A mutant that does not bind the proteasome, reduces ATPase activity associated with anti-S4 immunoprecipitates relative to mock-infected cells. This reduction in ATPase activity correlates positively with the ability of wt AdE1A, but not the N-terminal deletion mutant, to significantly reduce the ability of HPV16 E6 to target p53 for ubiquitin-mediated proteasomal degradation. AdE1A/proteasomal complexes are present in both the cytoplasm and the nucleus, suggesting that AdE1A interferes with both nuclear and cytoplasmic proteasomal degradation. We have also demonstrated that wt AdE1A and the N-terminal AdE1A deletion mutant are substrates for proteasomal-mediated degradation. AdE1A degradation is not, however, mediated through ubiquitylation, but is regulated through phosphorylation of residues within a C-terminal PEST region (aa 224-238).  相似文献   

10.
11.
12.
The 26 S proteasome of eukaryotes is responsible for the degradation of proteins targeted for proteolysis by the ubiquitin system. Yeast has been an important model organism for understanding eukaryotic proteasome structure and function. Toward a quantitative characterization of the proteasome, we have determined the localization, cellular levels, and stoichiometry of proteasome subunits. The subcellular localization of two ATPase components of the regulatory complex of the proteasome, Sug2/Rpt4 and Sug1/Rpt6, and a subunit of the 20 S proteasome, Pre1, were determined by immunofluorescence. In contrast to findings in multicellular organisms, these proteins are localized almost exclusively to the nucleus throughout the cell cycle. We have also determined the cellular abundance and stoichiometry of these proteasome subunits. Sug1/Rpt6, Sug2/Rpt4, and Pre1 are present in roughly equal stoichiometry with an abundance of 15,000-30,000 molecules/cell, corresponding to a concentration of 13-26 microM in the nucleus. Also, in contrast to mammalian cells, we find no evidence of a p27-containing "modulator" of the proteasome in yeast. This information will be useful in comparing and contrasting the yeast and mammalian proteasomes and should contribute to a mechanistic understanding of how this complex functions.  相似文献   

13.
J P Leite  C Niel  J C D'Halluin 《Gene》1986,41(2-3):207-215
A hierarchy of dominance has been observed in HeLa cells co-infected with two serotypes of adenovirus belonging to different subgroups. DNA replication and late protein synthesis of one serotype are inhibited by those of the other. The degree of inhibitory effect has the following decreasing order: adenovirus type 3 (Ad3) and Ad7 (subgroup B), Ad9 (D), Ad4 (E), Ad12 (A), Ad2 and Ad5 (C) [Delsert and D'Halluin, Virus Res. 1 (1984) 365-380]. HeLa cells were first transfected with recombinant plasmids carrying Ad5 E2A or E3 promoters fused to the chloramphenicol acetyl transferase gene (cat), and then infected with human Ad belonging to different subgroups. All the serotypes tested were found to be able to stimulate both E2A and E3 promoters. When HeLa cells were co-transfected with either of the previous plasmids, plus a second plasmid carrying the Ad3 E1A region, the same stimulatory effect was observed. However, an inhibitory effect on Ad5 E2A and E3 promoters seemed to occur when both Ad2 E1A (subgroup C) and Ad3 E1A (subgroup B) genes were present together. To determine which one of the early products was responsible for the observed repression effect, and to assign the target on the genome of subgroup C Ad, a plasmid was constructed in which the sequences at the 5' end of the Ad2 E1A region were fused to the structural sequences of the cat gene. In HeLa cells transfected with this plasmid, CAT activity was significantly increased after co-transfection with a plasmid carrying the Ad2 E1A region, but decreased with a plasmid carrying the Ad3 E1A region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
16.
17.
MYO18B is a class XVIIIB unconventional myosin encoded by a candidate tumor suppressor gene. To gain insights into the cellular function of this protein, we searched for MYO18B-interacting proteins by a yeast two-hybrid screen. Sug1, a 19S regulator subunit of the 26S proteasome, was identified as a binding partner of the C-terminal tail region of MYO18B. The association of MYO18B with Sug1 was further confirmed by GST pull-down, co-immunoprecipitation, and immunocytochemistry. Furthermore, proteasome dysfunction by a proteasome inhibitor or siRNA-mediated knock-down of Sug1 caused the up-regulation of MYO18B protein and MYO18B was polyubiquitinated in vivo. Collectively, these results suggested that MYO18B is a substrate for proteasomal degradation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号