首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Earlier studies have demonstrated very severe vascular lesions occuring after irradiation in human and experimental animals as well. We examined the rabbit aortic PGI2-formation using the platelet bioassay technique in one year aged rabbits after different irradiation doses and a time course. The findings demonstrate a significant increase in prostacyclin formation, which might be due to the damage of endothelial cells. This stage is followed by a long lasting severe depression. This behaviour in addition demonstrates a dose dependent manner, The findings of a long lasting decrease in vascular PGI2-formation might contribute to the understanding of the high incidence of vascular lesions being found at the site of irradiation.  相似文献   

2.
The effect of ionizing irradiation on the synthesis of prostacyclin (PGI2) by cult8erd bovine aortic endothelial cells was detemined. PGI2 was measuured in the culture medium by a radioimmunoassay for 6-Kto PGF1α. Two phenomena were observed following irradiation: a) Cells which suffered an immediate radiation damage (1000–5000 rads) released high quantities of PGI2 to the culture medium. This was due to a de novo synthesis of PGI2 stimulated by radiation induced cellular damage, since pretreatment with aspirin of the endothelial cell monolayers resulted in a marked inhibition of PGI2 release following irradiation. b) Metabolically active cells which remained confluent and firmly attaached to the culture dish following single, low and intermediate doses (200–1200 rads) radiation, exhibited a marked decreased in their capacity to synthesize PGI2 upon exposure to various stimuli of the archidonic acid cascade (arachidonic acid, melittin, ionophore A23187 and PGH2. Similar results were observed with cells treated with fractionated radiation.The quantities of PGI2 produced by the endothelial cells decreased as a function of the dose of radiation and time interval between irradiation and subsequent stimulation. Radiation had a minimal effect on the nonthrombogenic properties of the endothelial cells, as evidenced by the small increase in the platelet adherence to the endothelial cells. The effect of radiation on PGI2 pruction by the vascular endothelium may be relevant to the development of radiation induced capillary occlusions, and the enhancement of atherosclerotic lesions in large vesses.  相似文献   

3.
Hyperalgesia induced in rat paws or dog knee joints by prostacyclin (PGI2) and prostaglandin E2 was measured by a modification of the Randall-Selitto method (1) of by the degree of incapacitation (2). In both species PGI2 induced an immediate hyperalgesic effect but the effect of PGE2 had a longer latency. Low doses of PGI2 caused a short lasting effect but PGE2, large doses of PGI2 or successive administration of small doses of PGI2 caused a long lasting effect.It is suggested that prostacyclin mediates rat paw hyperalgesia induced by carrageenin. The long lasting hyperalgesic effect of PGE2 and high doses of PGI2 is possibly an indirect effect caused by stimulation of a sensory nerve sensitising mechanism.  相似文献   

4.
Prostacyclin (PGI2) is a potent vasolidator and is a potential therapeutic agent to increase blood flow during several disease states. PGI2 is alos elevated in plasma during sepsis or pancreatitis. The hemodynamic effect of PGI2 has not been investigated with regard to the portal venous system. In five anesthetized swine, cardiac output (CO), central venous pressure (CVP), femoral artery pressure (FAP), heart rate (HR), pulmonary artery pressure (PAP), portal venous flow (PoVF), and portal venous pressure (PoVP) were measured before and after increasing doses of PGI2. The infusions were then repeated after atropine administration. The previously reported effects on the peripheral and pulmonary vascular systems were confirmed. after an injection of 0.5 to 5.0 ug/kg of PGI2 into the left atrium, a significant decline in CO, FAP, and PAP occured. Atropinization further depressed CO. The most marked effecr of PGI2, however, was an increase in PoVF without a change in PoVP. This effect was more pronounced when atropine was administered. In anethetized swine, PGI2 is a potent vasodilator in all vascular beds, including the portal venous system. These hemodynamic changes should be realized when exogenous PGI2 is considered as a therapeutic agent or when endogenous PGI2 might increase in association with disease states like pancreatitis or sepsis.  相似文献   

5.
Gas chromatography with electron-capture detection of the extensively purified pentafluorobenzyl derivative of 6-oxo-PGF was used to determine prostacyclin in blood. Neither human peripheral plasma or whole blood, nor blood drawn directly from the human heart (blood from the right and left atrium which is comparable to pulmonary artery and vein blood), contained any detectable prostacyclin (< 20 pg/ml). Even hyperventilation did not result in detectable PGI2-formation. During intravenous infusion of PGI2 into one arm, large amounts were found in blood drawn from the other arm. Increased levels were also found during severe infection and in endotoxin shock. These results lend no support to theories based on the concept that prostacyclin is a circulating hormone under normal conditions.  相似文献   

6.
Infusion of PGI2 at a dose of 5 or 10 ng/kg/min during 72 hours into patients with peripheral vascular disease was followed by increased susceptibility of platelets to proaggregatory action of ADP and collagen but not that of arachidonate. The above effects were observed 24 hours after termination of infusion of PGI2. A tendency to an increased formation of TXA2 in PRP aggregated by arachidonate was also noticed. Infusion of PGI2 at a dose of 2 mg/kg/min during 72 hours into the patients caused the decreased platelt aggregability to ADP and arachidonate but not to collagen, and a decreased tendency of production of TXA2 in PRP aggregated by arachidonate. The existence of a “rebound effect” in platelets after a long term PGI2 therapy is suggested.  相似文献   

7.
Human venous endothelial cells synthesize prostacyclin (PGI2) in response to treatment with histamine. The amount of PGI2 produced is proportional to the histamine concentration over the range of 10?7 to 10?5 M, with a maximal response at 2–5 × 10?6 M. PGI2 synthesis occurs as a burst lasting less than 3 minutes after histamine addition. The H1 histamine receptor antagonist pyrilamine causes an 87% inhibition of PGI2 synthesis, whereas the H2 antagonist cimetidine gives no significant inhibition, suggesting that PGI2 synthesis in response to histamine is mediated by an H1 receptor.  相似文献   

8.
Prostacyclin /PGI2/ administered intra-arterially or intravenously to patients with peripheral vascular disease exerted a hyperglycemic effect. In normoglycemic patients receiving PGI2 at a dose of 5 ng/kg/min these effects were barely detectable, but they became unmasked by a rapid glucose injection. In diabetic patients the same PGI2 dose led to distinct elevation in blood glucose. Prostacyclin at a dose of 10 ng/kg/min raised blood glucose levels both at rest and after stimulation with glucose, and opposed effectively hypoglycemic action of tolbutamide in non-diabetic patients. PGI2 repressed glucose-induced insulin release in some normoglycemic patients but in others it either increased it or did not affect it. While hyperglycemic effects are reversible when PGI2 infusion is stopped, and do not interfere with the usual therapeutic administration of prostacyclin for a few days they, nevertheless, might constitute a risk in a patient with poorly controlled diabetes.  相似文献   

9.
Intact rings and homogenates of aorta from spontaneously hypertensive rats (SHR) contain enhanced capacity over normal rats (NR) to convert arachidonic acid into PGI2. The PGI2 synthetic system in SHR is stimulated to a greater extent than NR by norepinephrine. Indomethacin blocks this stimulation. PGE2 and PGF were detected in much smaller amounts in homogenates (undetected in rings) but their formation was not enhanced by the hypertensive tissue. The identity of PGI2 was based on 1) direct pharmacological assay on the rat blood pressure. In this system identical vasodepressor responses to PGI2 are observed after intracarotid and intrajugular administration 2) indirectly as 6-keto PGF isolated after incubation of aortic homogenates with tritiated arachidonic acid and 3) indirectly by GC-MS assay of PGE2, PGF and 6-keto PGF formed during incubation of aortic homogenates with excess unlabeled arachidonic acid. These results provide additional support to our recent hypothesis that PGI2, of aortic origin, might actively participate in the regulation of systemic blood pressure. Its enhanced formation by intact hypertensive vascular tissue reflects an increase in the number of enzyme molecules immediately available to the substrate. This could probably be an adaptive response to the elevated levels of catecholamines in the circulation.  相似文献   

10.
The metabolism of endogenous PGI2 (released by angiotensin II or bradykinin) and exogenous PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was studied in five different vascular beds of the anaesthetized cat. Plasma concentrations of 6-keto-PGF (the product of spontaneous hydrolysis of PGI2) and 6,15-diketo-13,14-dihydro-PGF (the metabolite formed from PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase) were determined in the efferent vessels of the respective vascular beds by specific radioimmunoassays.No major metabolism of PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was detected in the head and the hindlimbs of the cat. In the lung exogenous (circulating) PGI2 was not metabolized, whereas PGI2 synthetized in the lung itself was converted to 6,15-diketo-13,14-dihydor-PGF. No significant amounts of 6,15-diketo-13,14-dihydro-PGF-immunoreactivity were detected in hepatic venous blood after infusion of PGI2 into the portal vein. However as also no 6-keto-PGF was found, the liver seems to efficiently extract PGI2 from the circulation. The cat kidney had the highest capacity of all vascular beds investigated to release endogenous and exogenous PGI2 as 6-15-diketo-13,14-dihydro-PGF. In other organs (vascular beds) investigated PGI2 is either metabolized less efficiently by the 15-hydroxy-PG-dehydrogenase or further transformed to other metabolites.  相似文献   

11.
The effects of Prostacyclin (PGI2) infusion on insulin secretion and glucose tolerance were investigated in 7 healthy subjects. PGI2 infusion caused no statistically significant changes of either glucose or insulin concentration, over the range 2.5–20 ng/Kg/min. A constant PGI2 infusion (10 ng/Kg/min) did not inhibit acute insulin responses to a glucose (20 g i.v.) pulse (response before PGI2 = 612±307%; during PGI2 = 515±468%, mean ± SD, mean change 3–5 min insulin, % basal; P=NS). Glucose disappearance rates were similar after the first and second glucose pulse.Thus, in contrast to PGE2, PGI2 does not affect insulin secretion nor glucose disposal at doses producing platelet and vascular changes. It is hypothesized that an altered PGI2/PGE2 balance in diabetes may represent a link between vascular, platelet and metabolic changes.  相似文献   

12.
The metabolism of endogenous PGI2 (released by angiotensin II or bradykinin) and exogenous PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was studied in five different vascular beds of the anaesthetized cat. Plasma concentrations of 6-keto-PGF (the product of spontaneous hydrolysis of PGI2) and 6,15-diketo-13,14-dihydro-PGF (the metabolite formed from PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase) were determined in the efferent vessels of the respective vascular beds by specific radioimmunoassays.No major metabolism of PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was detected in the head and the hindlimbs of the cat. In the lung exogenous (circulating) PGI2 was not metabolized, whereas PGI2 synthetized in the lung itself was converted to 6,15-diketo-13,14-dihydor-PGF. No significant amounts of 6,15-diketo-13,14-dihydro-PGF-immunoreactivity were detected in hepatic venous blood after infusion of PGI2 into the portal vein. However as also no 6-keto-PGF was found, the liver seems to efficiently extract PGI2 from the circulation. The cat kidney had the highest capacity of all vascular beds investigated to release endogenous and exogenous PGI2 as 6-15-diketo-13,14-dihydro-PGF. In other organs (vascular beds) investigated PGI2 is either metabolized less efficiently by the 15-hydroxy-PG-dehydrogenase or further transformed to other metabolites.  相似文献   

13.
Prostaglandin synthesis by fetal rat bones was examined by thin-layer chromatography of culture media after preincubation with labeled arachidonic acid. Cultures in rabbit complement (non-heat inactivated serum) were compared with cultures in heat-inactivated serum or cultures treated with indomethacin. The major complement-dependent products were PGE2, PGF and 6-keto-PGF, the metabolite of prostacyclin (PGI2). Since PGI2 had not been previously identified in bone its ability to stimulate bone resorption was tested. Repeated addition of PGI2 stimulated release of previously incorporated 45Ca from fetal rat long bones in both short-term and long-term cultures at concentrations of 10−5 to 10−9M. Because of the short half life of PGI2 in solution at neutral pH, we tested a sulfur analog, thiaprostacyclin (S-PGI2) which was found to be a stimulator of bone resorption at concentrations of 10−5 to 10−6M. These studies suggest that endogenous PGI2 production may play a role in bone metabolism. Since vessels produce PGI2 it is possible that PGI2 release may be responsible for the frequent association between vascular invasion and resorption of bone or calcified cartilage in physiologic remodeling and pathologic osteolysis.  相似文献   

14.
Prostacyclin (PGI2), in a wide concentration range, produced neither contraction nor relaxation of isolated human saphenous vein. Isolated portal veins and vena cava from normal and spontaneously hypertensive rats (SHR) responded only with an increase in contractile tension when exposed to PGI2. This constrictor effect was absent in a calcium-free buffer. PGI2 failed to relax KCI contracted vena cava. The constrictor effect of PGI2 on portal vein was attenuated in a glucose-free, oxygen deficient buffer. No tachyphylaxis or tolerance to the constrictor effect of PGI2 was noted. Results emphasize that PGI2 may produce differing effects on vascular smooth muscle tension depending on species and type of blood vessel studied.  相似文献   

15.
It is demonstrated that feeding cod-liver oil to rats leads to a considerable reduction in the formation of platelet T×A2 and of vascular PGI2. No appreciable formation off T×A3 and PGI3 is observed, although arterial thrombosis is depressed and bleeding time is prolonged. These findings contradict the suggested role of prostaglandins of the 3-series in thromboregulation.  相似文献   

16.
To assess the implications of vascular eicosanoids system in the hypertension of Dahl salt-sensitive (Dahl S) strain, we investigated the production of vascular vasodepressor and vasoconstrictor eicosanoids in Dahl S rats. 14-week-old Dahl S rats on a 0.11% NaCl diet (normotension) or a 0.3% NaCl diet (borderline hypertension) had a significantly lowered generation of vascular prostacyclin (PGI2), compared with Dahl salt-resistant (Dahl R) rats. The impairment of vascular PGI2 in Dahl S rats was restored to the normal level of Dahl R rats with the elevation of blood pressure induced by a high salt diet (4% NaCl). The production of vascular PGI2 was closely related to the height of blood pressure. The deterioration of vascular PGI2 was also found in 4-week-old Dahl S rats with normotension. Conversely, vascular thromboxane A2 (TXA2) was significantly enhanced in 14-week-old Dahl S rats in all of the feeding groups. Thus, it seems possible that the proved alterations of the vasodepressor and vasoconstrictor eicosanoids partially contribute to the genesis of salt hypertension. Although the exact mechanisms remain obscure, the adaptation of vascular PGI2 on a high salt diet may be suitable to compete with the high blood pressure and to protect against the vascular damage.  相似文献   

17.
Dose-response curves for several prostaglandins (PGI2; PGD2; PGF2 and PGE2); BaCl2 or prostaglandin metabolites (15-keto-PGF; 13, 14-diOH-15-keto-PGF; 6-keto-PGF and 6-keto-PGE1 in quiescent (indomethacin-treated) uterine strips from ovariectomized rats, were constructed. All PGs tested as well as BaCl2, triggered at different concentrations, evident phasic contractions. Within the range of concentrations tested the portion of the curves for the metabolites of PGF was shifted to the right of that for PGF itself; the curve for 6-keto-PGF was displaced to the right of the curve for PGI2 and that for 6-keto-PGE1 to the left.It was also demonstrated that the uterine motility elicited by 10−5 M PGF and its metabolites was long lasting (more than 3 hours) and so it was the activity evoked by PGI2; 6-keto-PGF and BaCl2, but not the contractions following 6-keto-PGE1, which disappeared much earlier. The contractile tension after PGF; 15-keto-PGF; 13, 14-diOH-15-keto-PGF and PGI2, increased as time progressed whilst that evoked by 6-keto-PGF or BaCl2 fluctuated during the same period around more constant levels.The surprising sustained and gradually increasing contractile activity after a single dose of an unstable prostaglandin such as PGI2, on the isolated rat uterus rendered quiescent by indomethacin, is discussed in terms of an effect associated to its transformation into more stable metabolites (6-keto-PGF, or another not tested) or as a consequence of a factor which might protects prostacyclin from inactivation.  相似文献   

18.
To reveal the role of enzymes involved in PGI2 synthesis for vascular PGI2 generation in experimental hypertensive models, we defined PGI2 synthase and phospholipases activities in the aortic wall of two different experimental hypertensive rats, e.g. spontaneously hypertensive rats (SHR) and desoxycorticosterone acetate (DOCA)-salt hypertensive rats. In the stage of established hypertension both of the hypertensive models had a significantly large capacity of the vascular wall to produce PGI2, as compared to respective control rats. PGI2 synthase activities in the vascular wall were significantly increased by 27% for SHR and by 80% for DOCA-salt hypertensive rats. Moreover, the enzymatic activities were closely related to the blood pressure values for both of the models. On the other hand, phospholipase C or phospholipase A2 activities were increased or unchanged in SHR, respectively, whereas both of the phospholipases were significantly decreased in DOCA-salt hypertensive rats. Thus, it is indicated that PGI2 synthase is partly responsible for the increased PGI2 generation in the vasclar wall of SHR and DOCA-salt hypertensive rats, and that vascular phospholipase C is playing a more important role in providing arachidonate for PGI2 synthesis in SHR.  相似文献   

19.
The effects of products synthesized and/or secreted by activated platelets on production of PGI2 by human, rat and rabbit vascular rings were investigated. Of the platelet dense body constituents, 5HT stimulated PGI2 production by vascular tissue of all three species whereas ADP was active only on rat tissue. Of the lipids produced during platelet activation, PAF stimulated PGI2 production by vascular tissue of all three species, Lysophosphatidate was less active than PAF on rabbit and human tissue and inactive in rat tissue, and the TxA2-mimetic, U46619, was inactive on vascular tissue of all three species. It is concluded that there are species variations in the effects of agonists on vascular PGI2 production and that platelet-derived products other than platelet-derived growth factor and β-thromboglobulin could modulate PGI2 production to regulate platelet activation in vivo.  相似文献   

20.
The ω-chain variant analogs of prostacyclin (PGI2) and PGD2 in which the n-amyl side-chain has been replaced by a cyclohexyl group have been prepared and their cardiovascular activities have been compared to those of BW-245C(Fig. 1)(1) a potent anti-aggregatory vasodilator bearing a cyclohexyl-terminated side-chain on a hydantoin skeleton. The cyclohexyl group has little effect on PGI2, but converts PGD2 to a long lasting hypotensive agent and increases the platelet anti-aggregatory potency of PGD2 by a factor of 8. The prostaglandin antagonist N-0164 selectively blocks the anti-aggregatory actions of PGD2, cyclohexyl-PGD2, and BW-245C; with essentially no effect on PGI2, cyclohexyl-PGI2 and PGE2 at comparably effective doses. The latter observation is contrary to an earlier report by MacIntyre (2,3), but supports the view that the anti-aggregatory effect of high doses of PGE2 (EC50=50μM) is mediated by the PGI2 receptor (4). The hydantoin acts at the platelet PGD2 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号