首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electropermeabilized human platelets containing 5-hydroxy[14C]tryptamine ([14C]5-HT) were suspended in a glutamate medium containing ATP and incubated for 10 min with (in various combinations) Ca2+ buffers, phorbol 12-myristate 13-acetate (PMA), guanine nucleotides, and thrombin. Release of [14C]5-HT and beta-thromboglobulin (beta TG) were used to measure secretion from dense and alpha-granules, respectively. Ca2+ alone induced secretion from both granule types; half-maximal effects were seen at a -log [Ca2+ free] (pCa) of 5.5 and maximal secretion at a pCa of 4.5, when approximately 80% of 5-HT and approximately 50% of beta TG were released. Addition of PMA, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), GTP, or thrombin shifted the Ca2+ dose-response curves for secretion of both 5-HT and beta TG to the left and caused small increases in the maximum secretion observed. These results suggested that secretion from alpha-granules, like that from dense granules, is a Ca(2+)-dependent process stimulated by the sequential activation of a G-protein, phospholipase C, and protein kinase C (PKC). However, high concentrations of PMA and GTP gamma S had distinct effects in the absence of Ca2+ (pCa greater than 9); 100 nM PMA released approximately 20% of platelet 5-HT but little beta TG, whereas 100 microM GTP gamma S stimulated secretion of approximately 25% of each. Simultaneous addition of PMA greatly enhanced these effects of GTP gamma S. Phosphorylation of pleckstrin in permeabilized platelets incubated with [gamma-32P]ATP was used as an index of the activation of PKC during secretion. In the absence of Ca2+, 100 nM PMA caused maximal phosphorylation of pleckstrin and 100 microM GTP gamma S was approximately 50% as effective as PMA; neither GTP gamma S nor Ca2+ enhanced the phosphorylation of pleckstrin caused by 100 nM PMA. These results indicate that, although activation of PKC promoted secretion, GTP gamma S exerted additional stimulatory effects on secretion from both dense and alpha-granules that were not mediated by PKC. Measurement of [3H]inositol phosphate formation in permeabilized platelets containing [3H]phosphoinositides showed that GTP gamma S did not stimulate phosphoinositide-specific phospholipase C in the absence of Ca2+. It follows that in permeabilized platelets, GTP gamma S can both stimulate PKC and enhance secretion via G-protein-linked effectors other than this phospholipase.  相似文献   

2.
The generally accepted sequence of intracellular signal transduction involves: (1) cell surface receptor-ligand interactions; (2) activation of G-proteins; (3) activation of phospholipase C, leading to inositol phosphate (IP3), and diacylglycerol production; (4) parallel mobilization of intracellular Ca2+ by IP3, and; (5) activation of protein kinase C (PKC) by diacylglycerol and Ca2+, leading to; (6) cellular responses. Human neutrophils appear to utilize this cascade, at least in general, and some, but not all, elements of the intracellular signal cascade known to be operating in intact cells also function in permeabilized cell systems. We have previously shown that permeabilized neutrophils can be induced to secrete lysosomal enzymes in response to elevated levels of Ca2+ alone and this secretion can be synergistically enhanced by the presence of guanine nucleotides. We now show that Ca2+, in the presence and absence of guanine nucleotides, can stimulate the production of soluble inositol phosphates. Furthermore, neomycin, a putative inhibitor of phospholipase C, can block Ca2(+)-induced secretion. These data thus suggest a role for phospholipase C activity or its products in the transduction process. The next enzymatic activity 'downstream' is PKC. Consequently, we looked at the role Mg-ATP, one of the substrates of PKC, plays in degranulation by permeabilized neutrophils, We found no obligatory role for this nucleotide in the secretory process. We then looked at the activity of oleoyl-acetyl-glycerol (OAG), a synthetic diacylglycerol and PKC agonist, on degranulation. We found that OAG was largely additive with Ca2+. Another PKC agonist, phorbol myristate acetate (PMA), also did not display notable synergy. Finally, inhibitors of PKC activity were not capable of blocking secretion, either in the presence or absence of guanine nucleotides. Thus, while circumstantial evidence seems to point towards a requirement for phospholipase C activation and diacylglycerol production in secretion, we were unable to demonstrate the next putative step in signal transduction, namely activation of PKC.  相似文献   

3.
Electrically permeabilized RINm5F cells were used to assess the factors required for activation of protein kinase C (PKC) and insulin secretion. PKC was activated either by phorbol 12-myristate 13-acetate (PMA) or by the generation of endogenous diacylglycerol in response to the nonhydrolyzable guanine nucleotide analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S). As shown previously, both PMA and GTP gamma S elicit Ca2+-independent insulin secretion. This effect was mimicked by guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by guanosine 5'-O-(3-fluorotriphosphate) and guanosine 5'-O-(3-phenyltriphosphate) possessing only one negative charge in the gamma-phosphate group. The action of PMA was mediated by PKC, since the agent caused both phosphorylation of specific protein substrates and association of the enzyme with cellular membranes. This translocation was independent of the Ca2+ concentration employed. In contrast, GTP gamma S only promoted association of PKC with membranes at 10(-6) and 10(-5) M Ca2+ and failed to alter significantly protein phosphorylation in the absence of Ca2+. Neither Gpp(NH)p, which stimulates insulin release, nor the other two GTP analogs, increased the proportion of PKC associated with membranes. To verify that the Ca2+-dependent effect of GTP gamma S on PKC is due to activation of phospholipase C, we measured the generation of diacylglycerol. GTP gamma S indeed stimulated diacylglycerol production in the leaky cells by about 50% at Ca2+ concentrations between 10(-7) and 10(-5) M, an effect which was almost abolished in the absence of Ca2+. Thus, at 10(-7) M Ca2+, the concentration found in resting intact cells, the generated diacylglycerol was not sufficient to cause PKC insertion into the membrane, demonstrating that both elevated Ca2+ and diacylglycerol are necessary for translocation to occur. It is concluded that while PKC activation by PMA elicits Ca2+-independent insulin secretion, the kinase seems not to mediate the stimulatory action of GTP analogs in the absence of Ca2+.  相似文献   

4.
The effect of Mg-ATP and cyclic AMP on the secretion of alpha-melanocyto-stimulating hormone (alpha-MSH) from electrically permeabilized cells of rat intermediate lobe (IL) were investigated. Addition of exogenous Ca2+ stimulated alpha-MSH secretion in a concentration- (EC50 = 4.8 microM) and temperature-dependent manner. This Ca2+-evoked secretion was further enhanced by Mg-ATP and cyclic AMP. Mg-ATP was required for the fully secretory response in the electrically permeabilized IL cells and the maximal secretion was reached at 1 mM. Cyclic AMP in the presence of GTP gamma S also potentiated Ca2+-evoked alpha-MSH secretion to the same magnitude as Mg-ATP. In the absence of Ca2+ both the cyclic AMP and Mg-ATP did not stimulate alpha-MSH secretion from IL cells. The data suggest that Mg-ATP and cyclic AMP may modulate directly the secretory components rather than change intracellular concentration of free Ca2+.  相似文献   

5.
Rat mast cells, pretreated with metabolic inhibitors and permeabilized by streptolysin-O, secrete histamine when provided with Ca2+ (buffered in the micromolar range) and nucleoside triphosphates. We have surveyed the ability of various exogenous nucleotides to support or inhibit secretion. The preferred rank order in support of secretion is ITP greater than XTP greater than GTP much greater than ATP. Pyrimidine nucleotides (UTP and CTP) are without effect. Nucleoside diphosphates included alongside Ca2+ plus ITP inhibit secretion in the order 2'-deoxyGDP greater than GDP greater than o-GDP greater than ADP approximately equal to 2'deoxyADP approximately equal to IDP. Secretion from the metabolically inhibited and permeabilized cells can also be induced by stable analogues of GTP (GTP-gamma-S greater than GppNHp greater than GppCH2p) which synergize with Ca2+ to trigger secretion in the absence of phosphorylating nucleotides. ATP enhances the effective affinity for Ca2+ and GTP analogues in the exocytotic process but does not alter the maximum extent of secretion. The results suggest that the presence of Ca2+ combined with activation of events controlled by a GTP regulatory protein provide a sufficient stimulus to exocytotic secretion from mast cells.  相似文献   

6.
In order to better understand granule release from platelets, we developed an alpha-toxin permeabilized platelet model to study alpha-granule secretion. Secretion of alpha-granules was analyzed by flow cytometry using P-selectin as a marker for alpha-granule release. P-selectin surface expression occurred when platelets were permeabilized in the presence of Ca2+. Responsiveness to Ca2+ was lost 30 min after permeabilization but could be reconstituted with MgATP. Alpha-toxin-permeabilized, MgATP-exposed platelets also degranulated within a pH range of 5.4-5.9 without exposure to and independent of Ca2+. ATP, GTP, CTP, UTP, and ITP supported Ca2+-induced alpha-granule secretion, while H+-induced alpha-granule secretion occurred only with ATP and GTP. Both Ca2+- and H+-induced alpha-granule secretion required ATP hydrolysis. Kinase inhibitors blocked both Ca2+- and H+-induced secretion. These data suggest that alpha-granule secretion in this permeabilized platelet system shares many characteristics with granule secretion studied in other permeabilized cell models. Furthermore, these results show that H+ can trigger alpha-granule release independent of Ca2+.  相似文献   

7.
We have investigated the regulation of phospholipase D (PLD) activity by guanine nucleotides and Ca2+ in cells of the NG108-15 neuroblastoma X glioma line that were permeabilized with digitonin. The nonhydrolyzable GTP analogue guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) caused a nearly sixfold increase (EC50 = 3 microM) in production of [3H]phosphatidylethanol (specific product of the PLD transphosphatidylation reaction). Other GTP analogues were less effective than GTP gamma S, and guanosine-5'-O-(2-thiodiphosphate) inhibited PLD activation by GTP gamma S. Both basal and GTP gamma S-stimulated PLD activities were potentiated by MgATP and Mg2+. Adenosine-5'-O-(3-thiotriphosphate) and ADP also potentiated the effect of GTP gamma S, but non-phosphorylating analogues of ATP had no such effect. The activation of PLD by GTP gamma S did not require Ca2+ and was independent of free Ca2+ ions up to a concentration of 100 nM (resting intracellular concentration). Higher Ca2+ concentrations (greater than or equal to 1 microM) completely inhibited PLD activation by GTP gamma S. It is concluded that elevated intracellular Ca2+ concentrations may negatively modulate PLD activation by a guanine nucleotide-binding protein, thus affecting receptor-PLD coupling in neural-derived cells.  相似文献   

8.
Human platelets containing granule-bound [14C]serotonin were permeabilized, equilibrated at 0 degrees C with ATP and with various Ca2+ buffers and guanine nucleotides, and then incubated at 25 degrees C with or without a stimulatory agonist. Ca2+ alone induced the ATP-dependent secretion of [14C]serotonin (50% at a pCa of 5.1) but the sensitivity of secretion to Ca2+ was greatly enhanced by guanine nucleotides [6-fold by 100 microM GTP, 100-fold by 100 microM guanyl-5'-yl imidodiphosphate and greater than 500-fold by 100 microM guanosine 5'-O-(3-thiotriphosphate)] or by stimulatory agonists (10-fold by 2 units thrombin/ml and 4-fold by 1 microM 1-O-octadecyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine). When both GTP and a stimulatory agonist were added, they had synergistic effects on secretion. Cyclic GMP and GMP acted similarly to GTP. The effects of all these guanine nucleotides were inhibited by guanosine 5'-O-(2-thiodiphosphate), whereas those of stimulatory agonists were not. Our results demonstrate the presence in platelets of guanine nucleotide-dependent and independent mechanisms regulating the sensitivity of secretion to Ca2+.  相似文献   

9.
Adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) was used to examine the role of phosphorylation in the regulation of norepinephrine secretion by digitonin-permeabilized PC12 cells. While most kinases will use ATP gamma S to thiophosphorylate proteins, thiophosphorylated proteins are relatively resistant to dethiophosphorylation by protein phosphatases. Norepinephrine secretion by permeabilized PC12 cells was ATP- and Ca2+-dependent but resistant to calmodulin antagonists. Half-maximum secretion was obtained in 0.75 microM Ca2+. Permeabilized PC12 cells were incubated with ATP gamma S in the absence of Ca2+, the ATP gamma S was removed, and norepinephrine secretion was determined. Preincubation with ATP gamma S increased the amount of norepinephrine secreted in the absence of Ca2+, but it had no effect on the amount released in the presence of Ca2+. After a 15-min preincubation in 1 mM ATP gamma S, there was almost as much secretion in the absence of Ca2+ as in its presence. Inclusion of ATP in the preincubation inhibited the effect of ATP gamma S. Ca2+ stimulated the rate of modification by ATP gamma S as brief preincubations with ATP gamma S in the presence of Ca2+ resulted in higher levels of Ca2+-independent secretion than did preincubations with ATP gamma S in the absence of Ca2+. Similarly, brief preincubations of permeabilized cells with ATP in the presence of Ca2+ resulted in elevated levels of Ca2+-independent secretion. Secretion of norepinephrine from ATP gamma S-treated cells was ATP-dependent. These results suggest that norepinephrine secretion by PC12 cells is regulated by a Ca2+-dependent phosphorylation. Once this phosphorylation has occurred, secretion is still ATP-dependent, but it no longer requires Ca2+.  相似文献   

10.
The mechanisms of granule protein secretion have been studied in streptolysin-O-permeabilized guinea pig eosinophils. Secretion of the granule-associated enzyme N-acetyl-beta-D-glucosaminidase was dependent on both Ca2+ and a nonhydrolyzable GTP analogue, guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S), suggesting roles for both calcium and GTP binding proteins. Secretion was maximal by 7 min, and varied between 35 and 60% of the total enzyme activity. Other GTP analogues also elicited secretion, with rank order GTP-gamma-S greater than guanylyl-imidophosphate greater than guanylyl (beta-gamma-methylene-diphosphate). Unrelated nucleotide triphosphates showed little or no effect confirming the specificity of the G protein. Transmission electronmicroscopy confirmed that permeabilization alone did not result in loss of granules and that exocytosis was dependent on the addition of the effectors, Ca2+ and GTP-gamma-S. ATP enhanced the magnitude of the secretory response and also enhanced the effective affinities for both Ca2+ and GTP-gamma-S. In the presence of 10(-5) M GTP-gamma-S the ED50 (Ca2+) was pCa 5.57 +/- 0.04 (2.69 microM) in the absence of ATP and declined to pCa 6.16 +/- 0.03 (0.69 microM) in the presence of ATP (p less than 0.0001). Furthermore, ATP served to restore responsiveness in cells that had been rendered refractory by delaying stimulation after permeabilization. Pretreatment with PMA (an activator of PKC) inhibited the induction of a refractory state, whereas inhibition of PKC partially countered the ability of ATP to restore responsiveness, both observations pointing to a requirement for a specific component of the secretory mechanism to be in a phosphorylated state in order to condone the secretion process. These observations show that secretory mechanisms in eosinophils are similar to those in other myeloid cells, in particular neutrophils and mast cells, although the time course of secretion is more protracted.  相似文献   

11.
In order to examine the role of osmotic forces in degranulation, the effects of solutes and osmolality on granule secretion were explored using both FMLP-stimulated, intact neutrophils and Ca2+-stimulated, permeabilized cells. We employed a HEPES-based buffer system which was supplemented with: a) permeant (KCl or NaCl) or impermeant (Na-isethionate or choline-Cl) ions, or b) permeant (urea) or impermeant (sucrose) uncharged solutes. Intact and permeabilized cells had significantly different solute requirements for degranulation. FMLP-stimulated release from intact cells was supported by NaCl or Na-isethionate greater than KCl greater than choline-Cl or sucrose greater than urea. In contrast, the rank order of Ca2+-stimulated release from permeabilized cells was choline-Cl greater than Na-isethionate, KCl, or NaCl greater than sucrose greater than urea. Hypo-osmotic conditions caused increased levels of background granule release from both intact and permeabilized neutrophils. However, hypo-osmolality inhibited both FMLP-stimulated degranulation from intact cells and Ca2+-induced release from permeabilized neutrophils. While hyperosmotic conditions inhibited stimulated release from intact cells, this inhibition was much less pronounced in permeabilized cells when the granules were directly exposed to these solutions. In fact, hyperosmotic sucrose greatly enhanced Ca2+-induced secretion. Although isolated specific and azurophil granules showed some lytic tendencies in hypo-osmotic buffers, the overall stability of the isolated granules did not indicate that swelling alone could effect degranulation. These results suggest that degranulation in permeabilized cells is neither due to nor driven by simple osmotic forces (under resting or stimulated conditions) and emphasize differences obtained by bathing both the granules and plasma membrane (as opposed to membranes alone) in various solutes.  相似文献   

12.
Permeabilized rat hepatocytes were used to study the effects of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and GTP on Ca2+ uptake and release by ATP-dependent intracellular Ca2+ storage pools. Under conditions where these Ca2+ pools were completely filled, maximal doses of Ins(1,4,5)P3 released only 25-30% of the sequestered Ca2+. The residual Ca2+ was freely releasable with the Ca2+ ionophore ionomycin. Addition of GTP in the absence of Ins(1,4,5)P3 did not cause Ca2+ release and had no effect on the steady-state level of Ca2+ accumulation by intracellular storage pools. However, after a 3-4-min treatment with GTP the size of the Ins(1,4,5)P3-releasable Ca2+ pool was increased by about 2-fold, with a proportional decrease in the residual Ca2+ available for release by ionomycin. In contrast to the situation with freshly permeabilized cells, permeabilized hepatocytes from which cytosolic components had been washed out exhibited direct Ca2+ release in response to GTP addition. The potentiation of Ins(1,4,5)P3-induced Ca2+ release by GTP in permeabilized hepatocytes was concentration-dependent with half-maximal effects at about 5 microM GTP. The dose response to Ins(1,4,5)P3 was not shifted by GTP; instead GTP increased the amount of Ca2+ released at all Ins(1,4,5)P3 concentrations. The effects of GTP were not mimicked by other nucleotides or nonhydrolyzable GTP analogues. In fact, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) inhibited the actions of GTP. However, this inhibition only occurred when GTP gamma S was added prior to GTP, suggesting that the GTP effect is not readily reversible once the cells have been permeabilized. Experiments using vanadate to inhibit the ATP-dependent Ca2+ uptake pump showed that Ins(1,4,5)P3 releases all of the Ca2+ within the Ins(1,4,5)P3-sensitive Ca2+ pool even in the absence of GTP. The increase of Ins(1,4,5)P3-induced Ca2+ release brought about by GTP was also unaffected by vanadate. It is concluded that GTP increases the proportion of the sequestered Ca2+ which is available for release by Ins(1,4,5)P3, either by unmasking latent Ins(1,4,5)P3-sensitive Ca2+ release sites or by allowing direct Ca2+ movement between Ins(1,4,5)P3-sensitive and Ins(1,4,5)P3-insensitive Ca2+ storage pools.  相似文献   

13.
The role of guanine nucleotides in insulin secretion was investigated in electrically permeabilized RINm5F cells. Ca2+ stimulated insulin release (EC50 approximately 2 microM Ca2+). The GTP stable analog, GTP gamma S, elicited insulin secretion at vanishingly low Ca2+ concentrations (less than 10(-11) M), slightly potentiated the response to intermediate Ca2+ levels, but exerted less than additive effects at maximal Ca2+ concentrations. The GDP analog, GDP beta S, inhibited both GTP gamma S- and Ca2+-stimulated secretion. The action of GTP gamma S was not mediated by cAMP, as the latter only enhanced Ca2+-induced secretion. In contrast, 12-O-tetradecanoylphorbol-13-acetate, an activator of protein kinase C, promoted insulin release at nonstimulatory Ca2+ levels as well as potentiating the Ca2+ response. GTP analogs stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2), as assessed by inositol phosphate generation. However, this could not fully explain guanine nucleotide-induced secretion because: GTP gamma S-stimulated PtdInsP2 breakdown was totally dependent on Ca2+ and abolished at Ca2+ below 10(-11) M; at these Ca2+ levels, activators of protein kinase C were weak or ineffective secretagogues; the GTP analog Gpp(NH)p was much less effective than GTP gamma S in activating PtdInsP2 hydrolysis, while fully mimicking the effect on Ca2+-independent secretion. Both GTP gamma S-induced PtdInsP2 hydrolysis and insulin release were insensitive to pertussis toxin and cholera toxin. The findings point to a guanine nucleotide-regulated site in the activation of insulin secretion different from the known transmembrane signalling systems.  相似文献   

14.
The effects of substrate condition and ADP beta S on the pCa2+-tension relationships were investigated, using alpha-toxin permeabilized rabbit mesenteric artery at 37 degrees C. The contraction induced by 10 microM Ca2+ solution after permeabilization was as large as that induced by 145 mM K+ PSS solution containing 10 microM NE in the intact tissue, indicating that the majority of the cells were permeabilized. The Ca2+ sensitivity was greatly affected by the substrate condition and increasing the ratio of ATP/CP induced a leftward shift of the pCa2+-tension curve. Addition of 100 microM ADP beta S had a similar effect. When the ATP/CP ratio was high, the 0.1 microM Ca2+ solution relaxed the tissue precontracted by 10 microM Ca2+ solution more slowly showing hysteresis. One mM vanadate, which is reported to relax muscle by forming actomyosin-ADP-Vi (AM-ADP-Vi), completely inhibited both contractions induced by 0.18 microM Ca2+ solution containing 2 mM MgADP and 0.3 microM Ca2+ solution containing 0.3 microM PDBu. These results indicated that the population of AM-ADP complex in the crossbridge had increased due to the accumulation of ADP inside the tissue or activation of PKC and that the inhibition of ADP release from AM-ADP complex may be playing a key role in increasing Ca2+ sensitivity of myofilaments.  相似文献   

15.
Cytosolic free Ca2+ rises in pancreatic beta-cells in response to glucose stimulation and is part of the coupling to insulin secretion. This study evaluates a possible role for cytosolic long chain acyl-CoA esters in modulating Ca2+ handling by clonal beta-cells (HIT). Intact cells incubated with 20 microM free palmitic acid exhibited a 40% decrease in basal cytosolic free Ca2+. In contrast, acyl-CoA esters, up to a chain length of 16, but not the corresponding fatty acids, significantly lowered the Ca2+ set point maintained by cells permeabilized with saponin. The maximum response to the various acyl-CoA esters increased with increasing chain length, with no differences in the half-maximally effective concentration of 0.5 microM. Long chain acyl-CoA esters caused a 40-50% increase in 45Ca2+ influx into a non-mitochondrial pool in the permeabilized HIT cells, consistent with a stimulatory effect on the endoplasmic reticulum Ca(2+)-ATPase activity, but did not affect inositol 1,4,5-trisphosphate-induced Ca(2+)-efflux. Thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)-ATPase activity, blocked the decrease in the Ca2+ set point caused by acyl-CoA esters. The ability of acyl-CoA esters to lower the Ca2+ set point depended on the ATP/ADP ratio (or free ADP); the Ca2+ set point was lowered by 36 +/- 3.6% at an ATP/ADP ratio of 90 and by 14 +/- 1.9% at an ATP/ADP ratio of 7. Depletion of cellular protein kinase C did not prevent the acyl-CoA-induced lowering of the Ca2+ set point. These findings suggest that the increases in long chain acyl-CoA esters may play a role in restoring cytosolic free Ca2+ through activation of Ca(2+)-ATPases.  相似文献   

16.
We have used a digitonin-permeabilized cell system to study the signal transduction pathways responsible for stimulus-secretion coupling in the rat peritoneal mast cell. Conditions were established for permeabilizing the mast cell plasma membrane without disrupting secretory vesicles. Exocytotic release of histamine from digitonin-permeabilized cells required a combination of micromolar concentrations of Ca2+ and the stable guanine nucleotide analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]), but was independent of exogenous ATP. In the presence of 40 microM-GTP[S], exocytosis was half-maximal at 1.3 microM-Ca2+ and maximal at 10 microM-Ca2+; GTP[S] alone (100 microM) had no effect on histamine release in the absence of added Ca2+. In the presence of 10 microM free Ca2+, 5 microM-GTP[S] was required for half-maximal exocytosis. To examine the possible role of protein kinase C (PKC) in exocytosis, we utilized 12-O-tetradecanoylphorbol 13-acetate (TPA) to activate PKC and studied its effect on histamine release from permeabilized mast cells. Cells that had been incubated with TPA (25 nM for 5 min) exhibited increased sensitivity to both GTP[S] and Ca2+. The PKC inhibitor staurosporine blocked the effect of TPA without inhibiting normal exocytosis in response to the combination of GTP[S] and Ca2+. In addition, down-regulation of mast-cell PKC by long-term TPA treatment (25 nM for 20 h) blocked the ability of the cells to respond to TPA and inhibited exocytosis in response to Ca2+ and GTP[S] by 40-50%. These results suggest that the sensitivity of the exocytotic machinery of the mast cell can be altered by PKC-catalysed phosphorylation events, but that activation of PKC is not required for exocytosis to occur.  相似文献   

17.
Accumulation of Ca2+ (+ phosphate) by respiring mitochondria from Ehrlich ascites or AS30-D hepatoma tumor cells inhibits subsequent phosphorylating respiration in response to ADP. The respiratory chain is still functional since a proton-conducting uncoupler produces a normal stimulation of electron transport. The inhibition of phosphorylating respiration is caused by intramitochondrial Ca2+ (+ phosphate). ATP + Mg2+ together, but not singly, prevents the inhibitory action of Ca2+. Neither AMP, GTP, GDP, nor any other nucleoside 5'-triphosphate or 5'-diphosphate could replace ATP in this effect. Phosphorylating respiration on NAD(NADP)-linked substrates was much more susceptible to the inhibitory effect of intramitochondrial Ca2+ than succinate-linked respiration. Significant inhibition of oxidative phosphorylation is given by the endogenous Ca2+ present in freshly isolated tumor mitochondria. The phosphorylating respiration of permeabilized Ehrlich ascites tumor cells is also inhibited by Ca2+ accumulated by the mitochondria in situ. Possible causes of the Ca2+-induced inhibition of oxidative phosphorylation are considered.  相似文献   

18.
Human neutrophils and HL60 cells respond to extracellular ATP by causing exocytotic secretion. Secretion is accompanied by increases in inositol phosphates and a rise in cytosol Ca2+. The responses to ATP are blocked by pertussis toxin pretreatment, indicating the involvement of a guanine nucleotide regulatory protein. Other nucleotides that are active in promoting secretion are ATP gamma S, UTP, ITP and AppNHp, whilst 8-bromo-ATP, AppCH2p, ADP, AMP and adenosine are inactive.  相似文献   

19.
The study investigated the role of protein kinase C (PKC) in the modulation of agonist-induced Ca2+-dependent anion secretion by pancreatic duct cells. The short-circuit current (ISC) technique was used to examine the effect of PKC activation and inhibition on subsequent ATP, angiotensin II and ionomycin-activated anion secretion by normal (CAPAN-1) and cystic fibrosis (CFPAC-1) pancreatic duct cells. The ISC responses induced by the Ca2+-mobilizing agents, which had been previously shown to be attributed to anion secretion, were enhanced in both CAPAN-1 and CFPAC-1 cells by PKC inhibitors, staurosporine, calphostin C or chelerythrine. On the contrary, a PKC activator, phorbol 12-myristate 13-acetate (PMA), was found to suppress the agonist-induced ISC in CFPAC-1 cells and the ionomycin-induced ISC in CAPAN-1 cells. An inactive form of PMA, 4alphad-phorbol 12, 13-didecanote (4alphaD), was found to exert insignificant effect on the agonist-induced ISC, indicating a specific effect of PMA. Our data suggest a role of PKC in modulating agonist-induced Ca2+-dependent anion secretion by pancreatic duct cells. Therapeutic strategy to augment Ca2+-activated anion secretion by cystic fibrosis pancreatic duct cells may be achieved by inhibition or down-regulation of PKC.  相似文献   

20.
Stimulation of insulin secretion in the pancreatic beta-cell by a fuel such as glucose requires the metabolism of the fuel and is accompanied by increases in oxygen consumption and intracellular free Ca2+. A very early signal for these events could be a decrease in the cytosolic ATP/ADP ratio due to fuel phosphorylation. To test this hypothesis the regulation of free Ca2+ was evaluated in permeabilized RINm5F insulinoma cells that sequester Ca2+ and maintain a low medium free Ca2+ concentration (set point), between 100 and 200 nM, in the presence of Mg2+ and ATP. ATP, creatine, creatine phosphate, and creatine phosphokinase were added to the media to achieve various constant ratios of ATP/ADP. Free Ca2 was monitored using fura-2. The results demonstrated that the steady-state free Ca2+ concentration varied inversely with the ATP/ADP ratio and orthophosphate (Pi) levels. In contrast, no correlation between free Ca2+ and the phosphorylation potential (ATP/ADP.Pi) was found. Regulation of the Ca2+ set point by the ATP/ADP ratio was observed at ratios between 5 and 50 and at Pi concentrations between 1 and 7 mM, irrespective of whether mitochondria were participating in Ca2+ sequestration or were inhibited. Increasing the ATP/ADP ratio stimulated Ca2+ uptake by the nonmitochondrial pool but did not modify Ca2+ efflux. Glucose 6-phosphate (1 mM) had no effect on the Ca2+ set point. The data suggest that variations in the cytosolic ATP/ADP ratio induced by fuel stimuli may regulate Ca2+ cycling across nonmitochondrial compartments and the plasma membrane by modulating the activity of Ca2+ -ATPases. A mechanism linking fuel metabolism and cytosolic ATP/ADP ratio to activation of the Ca2+ messenger system in pancreatic beta-cells is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号