首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Materials with excellent biocompatibility on interfaces between artificial system and biological system are needed to develop any equipments and devices in bioscience, bioengineering and medicinal science. Suppression of unfavorable biological response on the interface is most important for understanding real functions of biomolecules on the surface. So, we should design and prepare such biomaterials.

Scoop of review

One of the best ways to design the biomaterials is generated from mimicking a cell membrane structure. It is composed of a phospholipid bilayered membrane and embedded proteins and polysaccharides. The surface of the cell membrane-like structure is constructed artificially by molecular integration of phospholipid polymer as platform and conjugated biomolecules. Here, it is introduced as the effectiveness of biointerface with highly biological functions observed on artificial cell membrane structure.

Major conclusions

Reduction of nonspecific protein adsorption is essential for suppression of unfavorable bioresponse and achievement of versatile biomedical applications. Simultaneously, bioconjugation of biomolecules on the phospholipid polymer platform is crucial for a high-performance interface.

General significance

The biointerfaces with both biocompatibility and biofunctionality based on biomolecules must be installed on advanced devices, which are applied in the fields of nanobioscience and nanomedicine.This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.  相似文献   

2.
Biomaterials prepared from polyesters of lactic acid and glycolic acid, or a mixture of the two, degrade in the presence of water into the naturally occurring metabolites, lactic acid and glycolic acid. While the lactic acid degradation product that is released from biomaterials is well tolerated by the body, lactic acid can influence the metabolic function of cells; it can serve as an energy substrate for cells, and has been shown to have antioxidant properties. Neural precursor cells, a cell population of considerable interest as a source of cells for neural tissue regeneration strategies, generate a high amount of reactive oxygen species, and when associated with a degradable biomaterial, may be impacted by released lactic acid. In this work, the effect of lactic acid on a neural cell population containing proliferative neural precursor cells was examined in monolayer culture. Lactic acid was found to scavenge exogenously added free radicals produced in the presence of either hydrogen peroxide or a photoinitiator (I2959) commonly utilized in the preparation of photopolymerizable biomaterials. In addition to its effect on exogenously added free radicals, lactic acid reduced intracellular redox state, increased the proliferation of the cell population, and modified the cell composition. The findings of this study provide insight into the role that lactic acid plays naturally on developing neural cells and are also of interest to biomaterials scientists that are focused on the development of degradable lactic‐acid‐based polymers for cell culture devices. The effect of lactic acid on other cell populations may differ and should be characterized to best understand how cells function in degradable cell culture devices. Biotechnol. Bioeng. 2009;103: 1214–1223. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
We proposed a new molecular imprinting procedure based on molecular integration for the purpose of cell capture. We selected the cell-adhesive protein fibronectin (FN) as the imprinting protein for preparing templates and evaluated selective cell adhesion on the FN imprinting substrate. Silica beads with a diameter of 15 μm were used as the stamp matrix and FN molecules were adsorbed as a monolayer. The FN recognition sites were constructed by integrating a surfactant as the ligand and immobilizing it with new biocompatible photoreactive phospholipid polymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) units. As control substrates, imprinting procedures were carried out using albumin (BSA imprinting substrate) and without imprinting protein (non-imprinting substrate). The binding of FN from the cell culture medium with the fetal calf serum was achieved on the FN imprinting substrate, and induced the cell adhesion. On the other hand, on the non-imprinted and BSA imprinting substrates, the FN scarcely bound from the cell culture medium, and subsequent cell adhesion could not be observed on the substrate. These results indicate that the FN binding sites were well constructed by arranging the ligand surfactant to a suitable position and immobilized by the photoreactive MPC polymer. The MPC polymer prevented the nonspecific adsorption of proteins from the cell culture medium. We concluded that this procedure is convenient and can be potentially used for the preparation of surfaces for cell engineering devices.  相似文献   

4.
The construction of biomaterials with which to limit the growth of cells or to limit the adsorption of proteins is essential for understanding biological phenomena. Here, we describe a novel method to simply and easily create thin layers of poly (2‐hydroxyethyl methacrylate) (p‐HEMA) for protein and cellular patterning via etching with ethanol and microfluidic devices. First, a cell culture surface or glass coverslip is coated with p‐HEMA. Next, a polydimethylsiloxane (PDMS) microfluidic is placed onto the p‐HEMA surface, and ethanol is aspirated through the device. The PDMS device is removed, and the p‐HEMA surface is ready for protein adsorption or cell plating. This method allows for the fabrication of 0.3 µm thin layers of p‐HEMA, which can be etched to 10 µm wide channels. Furthermore, it creates regions of differential protein adhesion, as shown by Coomassie staining and fluorescent labeling, and cell adhesion, as demonstrated by C2C12 myoblast growth. This method is simple, versatile, and allows biologists and bioengineers to manipulate regions for cell culture adhesion and growth. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:243–248, 2018  相似文献   

5.
Poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) macromonomers were synthesized for preparation of a novel cytocompatible polymer. The cytocompatible polymer was composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate (BMA), and the enantiomeric PLLA (or PDLA) macromonomer. The degree of polymerization of the lactic acid in the PLLA and PDLA segments was designed to be ca. 20. The copolymer-coated surface was analyzed with static contact angle by water. From the result, the PLLA (or PDLA) segment and MPC unit were located on the coated surface, and the monomer unit in the copolymer was reconstructed by contacting water. Fibroblast cell culture was performed to evaluate cell adhesion on the coated surface, and the cell morphology was observed. The number of cell adhesion is correlated with the PL(D)LA content, and the cell morphology is correlated with the MPC unit content. The porous scaffold was prepared by the formation of a stereocomplex between the PLLA and PDLA, and the cell adhesion and following cell intrusion was then evaluated. The fibroblast cells adhered on the surface and intruded into the scaffold through the connecting pores after 24 h. The cell morphology became round shape from spreading with the decreasing PLLA (or PDLA) content in the copolymer. It is considered that the change in the cell morphology would be induced by the MPC unit as cytocompatible unit. These findings suggest that the porous scaffold makes it possible to have cytocompatibility and to produce three-dimensional tissue regeneration.  相似文献   

6.
This study aimed to develop a sensitive and reliable immunoassay by applying a highly functional phospholipid polymer biointerface. We synthesized a phospholipid polymer--poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-p-nitrophenyloxycarbonyl poly(ethylene glycol) methacrylate (MEONP)] (PMBN). MEONP contains active ester groups on the side chains for immobilization of antibodies via oxyethylene. PMBN with different compositions and oxyethylene chain lengths were synthesized; their effects on nonspecific and specific values in the immunoassay were evaluated. MPC units reduce the background by preventing nonspecific protein adsorption. MEONP units could conjugate antibodies and enhance the specific signal. The specific signal was independent of the oxyethylene chain length, but long oxyethylene chains increased the background. Specific signals corresponding to the antigen were observed with the PMBN coating, and a liner standard curve was obtained. The PMBN-coated surface maintained residual activity after long-term storage. This surface affords a low background without requiring blocking treatment and is suitable for immobilized antibodies.  相似文献   

7.
《Process Biochemistry》2014,49(5):863-871
Human Umbilical Vein Endothelial Cell (HUVEC) growth on chitosan films and its enzymatically functionalized derivatives films with ferulic acid (FA) and ethyl ferulate (EF) was assessed by evaluating cell adhesion, morphology and cell viability. The results indicated that chitosan derivative films improved protein adsorption properties compared to chitosan films. The HUVEC cell morphology showed well attachment and spread phenotype on chitosan derivative films compared to those growing on chitosan films which did not spread and remained round. Evaluation of cell viability revealed improvement of cell adhesion on chitosan derivative films compared to chitosan film depending on the quantity of oxidized phenols grafted on chitosan. In addition, FA-/EF-chitosan films allowed almost similar cell adhesion. Furthermore, cell adhesion was increased with the film thickness. These results suggested that the oxidized phenols grafting on chitosan is a promising process to enhance cell adhesion, growth and creating useful functional biomaterials.  相似文献   

8.
A new class of diblock copolymers was synthesized from biodegradable poly(lactic acid) and poly(ethylene glycol)minus signmonoamine. These polymers were activated by covalently attaching linkers such as disuccinimidyl tartrate or disuccinimidyl succinate to the hydrophilic polymer chain. The polymers were characterized by (1)H NMR spectroscopy, (13)C NMR spectroscopy and gel permeation chromatography (GPC). These investigations indicated that the polymers were obtained with the correct composition, in high purities, and the expected molecular weight. By using dyes containing primary amine groups such as 5-aminoeosin as model substrates, it was possible to show that the polymers are able to bind such compounds covalently. The diblock copolymers were developed to suppress unspecific protein adsorption and allow the binding of bioactive molecules by instant surface modification. The polymers are intended to be used for tissue engineering applications where surface immobilized cell adhesion peptides or growth factors are needed to control cell behavior.  相似文献   

9.
A porous scaffold as a cell-compatible material was designed and prepared using a phospholipid copolymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate, and enantiomeric macromonomers, the poly(L-lactic acid) (PLLA) macromonomer, and poly(D-lactic acid) (PDLA) macromonomer. On the basis of the wide-angle X-ray diffraction and differential scanning calorimetry measurements, the formation of a stereocomplex between the PLLA and PDLA segments of the copolymer was observed on the porous scaffold. The porous structure was prepared by a sodium chloride leaching technique, and the pore was linked to the scaffold. The pore size was confirmed by scanning electron microscopy and found to be ca. 200 microm. These observations suggest that the porous scaffold makes it possible to produce cell-compatible materials, which may involve the following advantages for tissue engineering: (i) cell compatibility using phospholipid copolymer, (ii) adequate cell adhesion by poly(lactic acid), and (iii) complete disappearance of scaffold by dissociation of stereocomplex. The cell experiment using the porous scaffold will be the next subject and reported in a forthcoming paper.  相似文献   

10.
Oligo(lactic acid) is an ester‐analogue of short oligoalanine sequence and adopts a rigid left‐handed helical structure. In this study, oligo(lactic acid) was incorporated into oligoalanine sequences and their conformations were studied by vibrational circular dichroism and electronic circular dichroism spectroscopy. The results suggested that oligo(lactic acid) moiety in these sequences maintains a left‐handed helix and increases the conformational propensity of the oligoalanine moiety to form a left‐handed polyproline type II‐like helix. The importance of the chirality of oligo(lactic acid) moiety for the oligoalanine conformation was also studied. The results obtained in this study should be useful in developing ester‐containing oligopeptides that function better than normal peptides.  相似文献   

11.
The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.  相似文献   

12.
Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1) to nanostructure acrylonitrile-butadiene-styrene (ABS), a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2) to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3) to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion.  相似文献   

13.
Advanced interdisciplinary scientific field of tissue engineering has been developed to meet increasing demand for safe, functional and easy available substitutes of irreversibly damaged tissues and organs. First biomaterials were constructed as "two-dimensional" (allowing cell adhesion only on their surface), and durable (non-biodegradable). In contrast, biomaterials of new generation are characterized by so-called three dimensional porous or scaffold-like architecture promoting attachment, growth and differentiation of cells inside the material, accompanied by its gradual removal and replacement with regenerated fully functional tissue. In order to control these processes, these materials are endowed with a defined spectrum of bioactive molecules, such as ligands for adhesion receptors on cells, functional parts of natural growth factors, hormones and enzymes or synthetic regulators of cell behavior, incorporated in defined concentrations and spatial distribution against a bioinert background resistant to uncontrolled protein adsorption and cell adhesion.  相似文献   

14.
In order to separate ursodeoxycholic acid (UDCA) from its isomeric mixture, the molecular imprinting polymers (MIPs) were synthesized by using core–shell emulsion polymerization. In the porous imprinting polymer, ursodeoxycholic acid was used as imprinting molecule, acrylamide (AM) and α-methacrylic acid (MAA) were functional monomers, and CaCO3 was used for the porogen in the polymerization to obtain large pore. Characterization of the MIP structure with IR spectra demonstrated the expected MIPs. Through adsorption and selectivity assays, AM as the functional monomer showed better separation efficiency than MAA, and nonspecific and specific adsorption capacities of MIP with AM were 43.52 and 13.93 mg/g, respectively. The separation factor of MIP with AM for UDCA was 2.20. Furthermore, MIP with AM could be applied to separate UDCA from the isomeric mixture by column chromatography successfully.  相似文献   

15.
Previously, we developed a new molecular delivery system to target single living cells by using atomic force microscope and ultrathin needle referred to as nanoneedle. This system delivers molecules into the cell by attaching them to the surface of nanoneedle. However, nonspecific protein adsorption on the nanoneedle surface inside the living cells limits the range of application of this system. In the present study, we focused on nonspecific protein adsorption onto the nanoneedle surface inside the cells and examined whether this protein adsorption was reduced by modifying the nanoneedle surface with a biocompatible phospholipid polymer containing 2-methacryloyloxyethyl phosphorylcholine (MPC) unit. MPC polymer coating of the surface of silicon wafer reduced nonspecific adsorption of proteins from liver extracts and prevented the formation of clot-like protein aggregates. MPC polymer also decreased nonspecific adsorption of cytosolic protein onto the nanoneedle surface inside the living cell. On the other hand, MPC polymer showed no effect on nonspecific mechanical interaction between nanoneedle and the cell components. Surface modification with MPC polymer is a useful technique to modify the surface properties of nanoneedle.  相似文献   

16.
Quartz crystal microbalance immunosensors for environmental monitoring   总被引:1,自引:0,他引:1  
This paper presents discussion of quartz crystal microbalance (QCM) immunosensors for environmental monitoring. Factors limiting the practical application of antibodies to analytical problems are also presented. Among several candidates for the QCM immunosensor device, selected QCM devices and oscillating circuits were tested thoroughly and developed to obtain highly stable and sensitive frequency signals. The biointerface of QCM immunosensor was designed and controlled to immobilize antibody on the QCM surface, to reduce non-specific binding and to suppress denaturation of immobilizing antibody by self-assembled monolayer technique and artificial phospholipid (2-methacryloyloxyethyl phosphorylcholine (MPC)) polymer. MPC polymer as a antibody-stabilizing reagent was added to reduce non-specific binding of the antigen solution and stabilize the immunologic activity of the antibody-immobilized QCM. In addition, it provides examples for detection and quantitation of environmental samples using QCM immunosensors. The analytical results for fly ash extracted samples of dioxins using the QCM immunosensor indicated a good relationship with GC/MS methods. The integrating protocols of the competitive immunoassay and signal-enhancing step are for detecting low molecular analytes with extremely low detection limits using an QCM immunosensor. Furthermore, its detect limitation was extended from 0.1 to 0.01 ng/ml by the signal-enhancing step when the anti-bisphenol-A antibody conjugated MPC polymeric nanoparticles was used. The QCM immunosensor method has demonstrated its effectiveness as an alternative screening method for environmental monitoring because these results were compared with results obtained through environmental monitoring methods such as ELISA and GC/MS.  相似文献   

17.
Hepatocyte culture on biodegradable polymeric substrates   总被引:1,自引:0,他引:1  
The interactions of primary rat liver cells with biodegradable polymeric substrates were investigated in vitro to assess the suitability of the polymer materials for use in cell transplantation devices. The kinetics of cell adhesion to, and the growth and biochemical function of cells maintained on, films formed from poly (D,L-lactic-co-glycolic acid, 88: 12) (PLGA) or from a 50/50 (w/w) blend of PLGA and poly (L-lactic acid) (PLLA) were evaluated in comparison to two control substrates, matrigel coated or collagen-coated polystyrene petri dishes. The rate of cell adhesion to both types of polymeric substrates was similar to the rate of adhesion to the collagen control substrate, but of the two polymers, only the blend was suitable for extended culture. Hepatocytes maintained on the polymer blend films showed retention of differentiated cell function as measured by the rate of albumin secretion-the rate of albumin secretion by cells on the films was the same as the rate for cells on matrigel and reached a level in the range of reported in vivo levels (140-160 mug/10(6) cells/24 h). In contrast, albumin secretion by hepatocytes maintained on collagen-coated polystyrene culture dishes declined over five days to a level one third that of the initial level and one fifth that of cells maintained on the polymer blend films on day five. Such retention of differentiated cell function by hepatocytes in culture has previously been observed only when hepatocytes were cultured in the presence of exogenous extracellular matrix proteins or were cocultured with another cell type. In addition to retention of differentiated function, the cells maintained on the polymer blend films also displayed rates of DNA synthesis similar to controls maintained on collagen-coated polystyrene, a substrate optimal for DNA synthesis.  相似文献   

18.
A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.  相似文献   

19.
Coupled lactic acid fermentation and adsorption   总被引:7,自引:0,他引:7  
Polyvinylpyridine (PVP) and activated carbon were evaluated for coupled lactic acid fermentation and adsorption, to prevent the product concentration from reaching inhibitory levels. The lactic acid production doubled as a result of periodical circulation of the fermentation broth through a PVP adsorption column. The adsorbent was then regenerated and the adsorbed lactate harvested, by passing 0.1 N NaOH through the column. However, each adsorption-regeneration cycle caused about 14% loss of the adsorption capacity, thus limiting the practical use of this rather expensive adsorbent. Activated carbon was found much more effective than PVP in lactic acid and lactate adsorption. The cells of Lactobacillus delbrueckii subsp. delbrueckii (LDD) also had strong tendency to adsorb on the carbon. A study was therefore conducted using an activated carbon column for simultaneous cell immobilization and lactate adsorption, in a semi-batch process with periodical medium replacement. The process produced lactate steadily at about 1.3 g l(-1)h(-1) when the replacement medium contained at least 2 g l(-1) of yeast extract. The production, however, stopped after switching to a medium without yeast extract. Active lactic acid production by LDD appeared to require yeast extract above a certain critical level (<2 g l(-1)).  相似文献   

20.
发酵初期在米根霉菌发酵培养基中添加L-乳酸可以调控发酵产物乳酸的光学纯度。随着L-乳酸添加量的增加,所产L-乳酸的光学纯度随之增加,当L-乳酸的添加量≥1.5g/L时,D-乳酸不再产生。同时,L-乳酸的产量、生物量、糖转化率也随之降低。该调控方法对乳酸菌调控产L-乳酸光学纯度影响不大,对大肠杆菌发酵调控产D-乳酸光学纯度没有效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号