首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Walling  D.E.  Collins  A.L.  McMellin  G. K. 《Hydrobiologia》2003,497(1-3):91-108
The declining salmonid populations reported for many rivers in England and Wales have frequently been attributed to spawning gravel siltation and the need to address this problem through sediment control strategies has been widely recognised. The planning of such sediment control strategies is, however, severely hampered by the lack of reliable information on the source of the fine sediment deposited within spawning gravels. Given the need for information on the source of the fine sediment accumulating in salmonid spawning gravels, a reconnaissance survey, based on the source fingerprinting approach, has been undertaken to establish the source of fine interstitial sediment recovered from spawning gravels in 18 important salmonid rivers in England and Wales. The findings confirm the potential of the fingerprinting approach for establishing the provenance of interstitial fines. More specifically, the results provide useful information on the relative importance of surface and channel/subsurface sources as the source of the interstitial fines collected from the individual study rivers. Significant regional contrasts in the source of this sediment are reported. The findings have important implications for the design and implementation of effective sediment management strategies aimed at protecting salmonid spawning gravels, in terms of both the sources to be targeted and the associated need to adopt different approaches in different rivers.  相似文献   

2.
Early‐stage Chinook salmon Oncorhynchus tshawytscha embryos were incubated in artificial redds that mimicked hyporheic conditions in gravel‐augmented habitat to assess survivorship. Two complementary experiments were conducted where units varied along gradients of (1) increasing interstitial flow velocity (0·05–2·50 cm s?1) in a uniformly coarse (particles ≥22 mm) sediment mixture and (2) increasing sediment porosity with interstitial flow velocity held constant. Embryonic survivorship increased moderately along a gradient of interstitial flow velocity, while survivorship among units with varying sediment porosities was consistent. No evidence for flow‐induced agitation and mortality was observed. Results suggest that high interstitial flow velocities may confer a moderate advantage for incubating salmonid embryos when conditions that typically reduce embryonic mortality (i.e. low concentrations of fine particles) are ideal.  相似文献   

3.
This paper describes the gravel type and structure of brown trout spawning gravels in Teesdale, the flow characteristics of the spawning sites and the size of redds. Factors influencing redd size are investigated and it is concluded that female size is a major factor. Relationships are established between various redd characteristics and the fork length of female fish. The findings are discussed in relation to the existing literature concerning salmonid spawning sites.  相似文献   

4.
The measurement of the seepage velocity through river-bed gravels is required in many biological and chemical investigations concerned with chemical fluxes through the gravel interstices. An improved conductiometric technique is described which is based on an earlier electrolytic method. The apparatus is calibrated for a range of gravel types to yield a spatially-averaged seepage velocity rather than a Darcian bulk velocity. Problems of stratification of the electrolyte and the need for temperature monitoring have been eliminated. The apparatus is compact and, incorporating a micro-computer-based data aquisition system, is easy and rapid to use even in adverse field conditions.  相似文献   

5.
Effects of sedimentation on the gravels of an industrial river system   总被引:2,自引:0,他引:2  
The natural recovery of trout ( Salmo trutta L.) populations in an industrial river, the Ebbw Fawr, South Wales, has been depressed by problems of natural recruitment. Rainbow trout ( Salmo gairdneri Richardson) eggs were planted in river gravels to assess the effects of siltation on salmonid spawning success. In reaches where siltation due to the coal industry has occurred, 98–100% of eggs died during incubation in the gravels. Experiments using standpipe techniques measured gravel permeabilities and rates of dissolved oxygen (DO) supply to artificially planted eggs, the results showed a strong dependence of hatching success and alevin size on these two parameters. The median lethal DO supply rate was about 50 μg cm-2 h-1.  相似文献   

6.
SUMMARY. 1. The life cycle of salmonid fishes is described.
2. The performance and environmental requirements of the various life stages of the trout ( Salmo trutta L.) are reviewed, (a) The literature gives predictive relationships between water temperature and rate of embryonic development, food requirements and growth rate, (b) Water temperature, intragravel oxygen supply rate, water pH, the occurrence of mechanical shock, disturbance of spawning gravels, sedimentation and water chemistry can all influence the survival of the intragravel stages, (c) The survival and/or well-being of the free-swimming stages and the success of spawning are influenced by such factors as dissolved oxygen concentration, pH, water depth, water velocity and water chemistry.
3. Human activities such as impoundment, river transfer, drainage works, land improvement, afforestation and deforestation can all influence trout populations via changes in flow regime (and related effects such as sedimentation), temperature regime and water chemistry.
4. Man can also influence trout populations directly by cropping for food and/or sport and by artificial stocking.
5. Examples of practical application of present knowledge are given and some future research needs are listed.  相似文献   

7.
Drift-feeding models are essential components of broader models that link stream habitat to salmonid populations and community dynamics. But is an additional feeding mode needed for understanding and predicting salmonid population responses to streamflow and other environmental factors? We addressed this question by applying two versions of the individual-based model inSTREAM to a field experiment in which streamflow was varied in experimental units that each contained a stream pool and the adjacent upstream riffle. The two model versions differed only in the feeding options available to fish. Both versions of inSTREAM included drift feeding; one also included a search feeding mode to represent feeding in which food availability is largely independent of streamflow, such as feeding from the benthos, or feeding from the water column or the water’s surface in low water velocities. We compared the abilities of the two model versions to fit the observed distributions of growth by individual rainbow trout (Oncorhynchus mykiss) in the field experiment. The version giving fish the daily choice between drift or search feeding better fit observations than the version in which fish fed only on drift. Values for drift and search food availability from calibration to the individual mass changes of fish in experimental units with unaltered streamflow yielded realistic distributions of individual growth when applied to experimental units in which streamflow was reduced by 80 %. These results correspond with empirical studies that show search feeding can be an important alternative to drift feeding for salmonids in some settings, and indicate that relatively simple formulations of both processes in individual-based population models can be useful in predicting the effects of environmental alterations on fish populations.  相似文献   

8.
Microelectrodes were used to measure oxygen profiles and local mass transfer coefficient profiles in biofilm clusters and interstitial voids. Both profiles were measured at the same location in the biofilm. From the oxygen profile, the effective diffusive boundary layer thickness (DBL) was determined. The local mass transfer coefficient profiles provided information about the nature of mass transport near and within the biofilm. All profiles were measured at three different average flow velocities, 0.62, 1.53, and 2.60 cm sec-1, to determine the influence of flow velocity on mass transport. Convective mass transport was active near the biofilm/liquid interface and in the upper layers of the biofilm, independent of biofilm thickness and flow velocity. The DBL varied strongly between locations for the same flow velocities. Oxygen and local mass transfer coefficient profiles collected through a 70 micrometer thick cluster revealed that a cluster of that thickness did not present any significant mass transport resistance. In a 350 micrometer thick biofilm cluster, however, the local mass transfer coefficient decreased gradually to very low values near the substratum. This was hypothetically attributed to the decreasing effective diffusivity in deeper layers of biofilms. Interstitial voids between clusters did not seem to influence the local mass transfer coefficients significantly for flow velocities of 1.53 and 2.60 cm sec-1. At a flow velocity of 0.62 cm sec-1, interstitial voids visibly decreased the local mass transfer coefficient near the bottom.  相似文献   

9.
Salmon, trout, char, grayling, whitefish and ciscoes are all members of Family Salmonidae and, whilst the monophyly of this group is not in doubt, determining which fishes are their closest relatives is a different story altogether. A new topology based on a mitogenomic study by Ishiguro et al. supports the hypothesis that the sister group of Salmonidae is Esociformes (e.g. pike, pickerel and mudminnows) rather than Osmeroidei (e.g. smelts, galaxiids and icefishes). This surprising discovery gives a new perspective on the evolution of many salmonid traits, including anadromy (the migration of fish from seawater to freshwater to spawn), the distribution of salmonid ancestors and previous morphology-based phylogenetic analyses.  相似文献   

10.
In the context of mechanical loosening, we studied the hypothesis that wear-particle migration in the fibrous membrane under tibial plateaus after total knee arthroplasty can be explained by the pumping effects of the interstitial fluid in the tissue. Further, as a secondary objective we investigated the possibility that interface-tissue differentiation is influenced by interstitial fluid flow and strain, as mechanical effects of interface motions. For comparative reasons, we analyzed a previously published simplified two-dimensional finite-element model, this time assuming biphasic tissue properties. We wanted to determine hydrostatic pressure and flow velocities in the fluid phase, in addition to stresses and strains, for time-dependent loading of the plateau. We found that fluid flow in the interface was extremely slow, except in the periphery. Hence, loosening due to particle-induced bone resorption appears improbable. The results, however, do support the idea that particles migrate with fluid flow, when such flow occurs. Where fibrous tissue tends to be prominent in reality, the fluid is repeatedly extruded and reabsorbed in the model. Where these values are low, fibrocartilage is commonly found. When material properties were varied to subsequently represent fibrocartilage and two stages of mineralization, the strains and fluid velocities is reduced. Fluid pressure, however, did not change. Our results refute the hypothesis that wear particles are pumped through the interface tissue below a TKA but support the hypothesis that interface tissue type and loosening processes are influenced by mechanical tissue variables such as tissue strain and interstitial fluid velocity.  相似文献   

11.
Superporous agarose beads contain both normal diffusion pores and special, very wide superpores through which part of the chromatographic flow is transported, a situation that may greatly improve the chromatographic performance. For the first time such pore flow was measured directly by following the movement of microparticles (dyed yeast cells) through superporous beads packed in a chromatographic bed. The passage of the microparticles through the superpores and through the interstitial pores was recorded by a microscope/video camera. The video recordings were subsequently used to determine flow paths as well as the convective fluid velocities in both the superpores and the interstitial pores. The superpore fluid velocity was found to be proportional to the ratio between the squares of the respective pore diameters, which is in agreement with the Kozeny-Carman equation. Values for two-dimensional and three-dimensional tortuosity of the flow paths were measured and calculated respectively.  相似文献   

12.
The growth and progression of most solid tumors depend on the initial transformation of the cancer cells and their response to stroma-associated signaling in the tumor microenvironment 1. Previously, research on the tumor microenvironment has focused primarily on tumor-stromal interactions 1-2. However, the tumor microenvironment also includes a variety of biophysical forces, whose effects remain poorly understood. These forces are biomechanical consequences of tumor growth that lead to changes in gene expression, cell division, differentiation and invasion3. Matrix density 4, stiffness 5-6, and structure 6-7, interstitial fluid pressure 8, and interstitial fluid flow 8 are all altered during cancer progression.Interstitial fluid flow in particular is higher in tumors compared to normal tissues 8-10. The estimated interstitial fluid flow velocities were measured and found to be in the range of 0.1-3 μm s-1, depending on tumor size and differentiation 9, 11. This is due to elevated interstitial fluid pressure caused by tumor-induced angiogenesis and increased vascular permeability 12. Interstitial fluid flow has been shown to increase invasion of cancer cells 13-14, vascular fibroblasts and smooth muscle cells 15. This invasion may be due to autologous chemotactic gradients created around cells in 3-D 16 or increased matrix metalloproteinase (MMP) expression 15, chemokine secretion and cell adhesion molecule expression 17. However, the mechanism by which cells sense fluid flow is not well understood. In addition to altering tumor cell behavior, interstitial fluid flow modulates the activity of other cells in the tumor microenvironment. It is associated with (a) driving differentiation of fibroblasts into tumor-promoting myofibroblasts 18, (b) transporting of antigens and other soluble factors to lymph nodes 19, and (c) modulating lymphatic endothelial cell morphogenesis 20.The technique presented here imposes interstitial fluid flow on cells in vitro and quantifies its effects on invasion (Figure 1). This method has been published in multiple studies to measure the effects of fluid flow on stromal and cancer cell invasion 13-15, 17. By changing the matrix composition, cell type, and cell concentration, this method can be applied to other diseases and physiological systems to study the effects of interstitial flow on cellular processes such as invasion, differentiation, proliferation, and gene expression.  相似文献   

13.
1. Direct ecological effects of biological invasions have been widely documented, but indirect genetic effects on native species are poorly known. In many cases, this is because of the lack of information on the genetic structure of species affected by invasions. 2. We used microsatellite DNA loci to estimate the genetic structure and gene flow patterns of Galaxias maculatus, a galaxiid fish endemic to the southern hemisphere, which is increasingly being threatened by salmonid invasions. 3. Analysis of nine diadromous populations of G. maculatus in Chilean Patagonia (an area heavily impacted by farming of non‐native salmonids) indicates that dispersal is mostly a passive process, seemingly driven by wind and currents and resulting in high gene flow and weak population structuring. 4. Gene flow was asymmetrical, with three populations acting as sources and six populations acting as sinks. Sinks had lower habitat quality and had a greater incidence of adults than sources, which consisted mostly of juveniles. 5. Rivers invaded by salmonid escapees experienced significantly higher aquaculture pressure than rivers where salmonid escapees were apparently absent, but no effect on genetic diversity of G. maculatus could be detected. 6. We discuss whether salmonid aquaculture might affect the demography and connectivity of galaxiid metapopulations: indirectly through habitat alteration and directly through escapes of predatory fish.  相似文献   

14.
This paper describes the development of the 'egg sandwich', a system for assessing stream substratum quality by linking measurements of depth-specific salmonid egg hatching success and physico-chemical water variables from the same sites within the interstitial zone.  相似文献   

15.
Prior investigations have examined steady-state flow in surface flow treatment wetlands, with mixing modeled as advection-dominated, and reaction calculated using flow-weighted averages over collections of stream tubes with different velocities. This work extends these concepts to non-steady flow conditions and temporally varying inlet concentrations. The essential construct that makes the approach feasible is definition of a set of reference (steady) state conditions under which the residence time distribution (RTD) and stream-tube specific rate constants are defined. Residence time in any stream tube under non-steady flow is treated as a linear function of its reference-condition residence time, and the overall wetland retention time under both mean and varying flow regimes. Outlet concentration is found by convolution of the reaction term with a varying inlet concentration function. For real-world flow and concentration data collected at discrete points in time, integration for outlet concentration is approximated using linear interpolation to generate inlet concentrations and velocities at intermediate points in time. The approach is examined using data from the literature. Vegetation density and depth distributions are seen as central in determining mixing and treatment performance.  相似文献   

16.
Summary A microcomputer-controlled heat-pulse system for the measurement of sap velocity in trees is described. Several published methods for determining sap velocity from the temperature rise measured either above or below a heater inserted into the stem were compared and evaluated. All methods could be improved by the use of curve-fitting procedures, with a particularly useful approach involving direct estimation of the parameters of the diffusion equation using the non-linear curve-fitting package maximum likelihood programme. An alternative approach that was based on measurement of the value of the maximum temperature was proposed and tested. This was found to be particularly robust and sensitive to changes in flow rate. Although sap-flow velocity varied markedly with depth in the stem (as shown by the rate of dye movement), the maximum temperature at any given flow rate was found to be relatively insensitive to sensor depth. Estimated sap-flow velocities were compared with evaporation rates estimated either by weighing (for potted trees) or by the Penman-Monteith equation. Several independent methods were used for estimating the values of boundary layer resistance and net radiation that were required for application of the Penman-Monteith equation. There was a close relationship between flow and evaporation with some evidence for hysteresis. Although absolute calibration of the sap-flow estimates is difficult, the methods described are all useful for relative studies and all responded rapidly to altered flow rates caused by changing weather conditions.  相似文献   

17.
  1. Understanding the effects of density-dependent and density-independent factors on recruitment is often inhibited by difficulties quantifying their relative contributions in highly variable recruitment data. Use of data-driven statistical methods with data that include one or more extreme recruitment events could help overcome these difficulties.
  2. Juvenile Atlantic salmon and trout abundances in Wales have declined over the last 2 decades, and 2016 was a notably poor recruitment year in rivers around southern Europe, including England and Wales. The 2016 recruitment crash coincided with extreme winter weather conditions, leading to speculation that unusually warm temperatures and high flows adversely affect salmonid recruitment and caused the 2016 crash, although this remains untested.
  3. We developed data-driven statistical models to: (1) describe juvenile salmonid recruitment from density-dependent and density-independent factors; and (2) assess whether the density-independent factors probably contributed to the 2016 salmon recruitment crash. We compiled salmon and trout young-of-year juvenile abundances from electrofishing surveys, egg deposition estimates and river flow and air temperature data from 2001–2017 for seven Welsh rivers, broadly representative of rivers around Wales. We used river flow and air temperature data to derive ecologically and behaviourally meaningful density-independent explanatory variables.
  4. Salmonid recruitment in Wales was best described using density-dependent and density-independent factors, especially for salmon: after accounting for a concave relationship with egg deposition, salmon juvenile abundance was reduced under (1) warmer spawning temperatures that might inhibit spawning, and (2) higher flood frequencies during pre-emergence and emergence that might washout eggs or alevins. Results were less clear for trout, perhaps because they are behaviourally more plastic.
  5. Our findings provide empirical support for general and predictable effects of temperature and flow during spawning and emergence on salmonid—especially salmon—recruitment in Wales. Furthermore, we suggest that the 2016 salmon recruitment crash was caused—in part—by particularly inclement spawning and emergence conditions, which could be more common under future climate change. Our findings suggest that future salmonid stock assessment models could include the effects of density-independent variables on recruitment to improve their predictive power.
  相似文献   

18.
Thomson JR  Clark BD  Fingerut JT  Hart DD 《Oecologia》2004,140(3):533-542
Larval black flies often exhibit spatially aggregated distributions, and individuals within patches can potentially reduce the supply of suspended food particles to downstream neighbors by modifying local flow characteristics. We used hot-film anemometry to quantify the magnitude and spatial extent of flow modifications downstream from feeding Simulium vittatum larvae in a laboratory flume, and to determine whether temporal patterns of flow variation are related to movements of the larval feeding appendages. Mean velocity 1 mm downstream from feeding larvae was reduced by 75%, and the percent reduction in velocity diminished asymptotically with downstream distance. Reduced velocities were evident as much as 60 mm downstream from, and 3 mm to either side of, larvae. Turbulence intensity (i.e., the SD of the velocity time series) was generally higher in this region relative to control flow conditions. Three results demonstrate the major contribution of the larval feeding appendages (i.e., labral fans) to such flow modification. First, there was a minimal reduction in mean velocity 5 mm downstream from non-feeding larvae (i.e., with closed labral fans), whereas mean velocity at the same location was reduced markedly when larvae were feeding. Second, the power spectrum of the velocity time series exhibited greatest power at frequencies that corresponded to the frequency of labral fan motions. Third, fan flick times accounted for most of the variance in the velocity power spectrum. The large local flow modifications that we documented have potentially important consequences for the feeding performance and growth of individuals located within larval aggregations, and are likely to influence behavioral interactions and spacing patterns.  相似文献   

19.
Recent studies have demonstrated that the energetic profitability (net energy intake potential; NEI potential) of a habitat, which is calculated as the gross energy gain from foraging minus the energy expenditure from swimming at a focal point, may be a useful tool for predicting the salmonid biomass. The effectiveness of the NEI potential should be tested in various systems. Even if the NEI potential is validated, its predictive accuracy and transferability could be limited if the cover habitat, which is known to be an important factor for determining salmonid abundance, is not considered. We tested whether the NEI potential is effective for predicting the salmonid biomass even in a stream with abundant cover and whether combining the NEI potential and cover effects can improve the predictability of fish biomass using a generalized linear model. Our results demonstrated that the NEI potential could generally predict the fish biomass (percent deviance explained?=?79.9 %), and the model that incorporated both the NEI potential and the cover ratio improved the predictive accuracy (percent deviance explained?=?88.5 %). These results suggest that energetic profitability can be an effective indicator for assessing habitat quality and is relatively transferable to other systems. Furthermore, when cover effects are considered, the habitat quality is more accurately represented; thus, combining the energetic profitability and the cover effects might improve the transferability of the assessment across habitats.  相似文献   

20.
Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号