首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We purified heat-labile enterotoxins (LThs) from YT3, H-10407 and YT240 strains isolated from human diarrheal patients. These LThs were immunologically identical to each other. The molecular weights of their A and B subunits were also the same by means of SDS-polyacrylamide gel electrophoresis. However, the ionic charges of the molecular surfaces of these LThs were different as shown by polyacrylamide gel isoelectric focusing. Though the pI points of B subunits of the LThs were identical to each other, the pI points of A subunits were found to be different. These data suggest that the ionic charge differences among A subunits cause differences in holo LThs in their charge, and that there is heterogeneity among A subunits produced by strains of human enterotoxigenic Escherichia coli.  相似文献   

2.
The physical characteristics of cAMP-dependent protein kinases and their, regulatory subunits from calf uterus, human uterus, human mammary tumor, and rat pituitary and of cAMP-binding protein from calf uterus were determined by quantitative polyacrylamide gel electrophoresis in buffers containing the detergent, Triton X-100. In the four tissues, protein kinases of either type A1, with molecular weight (Mr) = 200,000, or type B, of Mr = 80,000, or both, previously described were found. Trivial charge isomerism, or size isomerism, exists within each of the two classes, Protein Kinase A and B. The protein kinase recombined from the regulatory and catalytic subunits is not significantly different from the crude or isolated protein kinase. Protein Kinases A and B exist each in either one of the isozyme forms I and II but these are not reflected in polyacrylamide gel electrophoresis at pH 10.2. Protein Kinase B appears to be a product of the partial proteolysis of Protein Kinase A. The regulatory subunits of Protein Kinases A from the four tissues are distinct from those of Protein Kinases B. No physical distinction exists between regulatory subunits derived from isozyme forms I and II. cAMP-Binding Proteins A and B are physically indistinguishable, by polyacrylamide gel electrophoresis at pH 10.2, from the regulatory subunits of Protein Kinases A and B, respectively.  相似文献   

3.
Bovine liver mitochondrial acetyl-CoA acetyltransferase (acetyl-CoA:acetyl-CoA C-acetyltransferase, EC 2.3.1.9) has been obtained in three forms designated transferase I, A and B on the basis of their elution positions from chromatography on phosphocellulose. All forms have been shown to have a molecular weight of about 152 000, each being composed of four similar subunits. Amino acid analysis of transferase A and B, the two major forms, revealed a close relationship between both forms with almost identical amino acid composition and arginine as N-terminal residue. The three transferases differ with respect to their redox state and their multiplicity of forms with isoelectric points of 6.9, 7.5 and 8.8, into which the transferases I and A were spontaneously transformed upon isoelectric focusing or rechromatography on phosphocellulose. Transferase B represents a stable enzyme form with an isoelectric point of 8.8. Although the redox state of transferase B can be adjusted to that of transferase A still a difference in charge and in the multiplicity of forms exists, thus indicating different protein states.  相似文献   

4.
Hepatic arginase (L-arginine amidinohydrolase, EC 3.5.3.1) is an oligomer composed of three or four subunits. The present studies indicate heterogeneity in the size and charge of arginase subunits in mouse liver. Two types of arginase subunits with molecular weights of approximately 35,000 and 38,000 have been found. These two subunits are detected in liver cytosol or in purified preparations of arginase after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Two dimensional SDS-PAGE revealed multiple ionic forms of arginase for both the 35,000 and 38,000 subunits; the subunits contain basic proteins (pI range 7.8-9.1) and acidic proteins (pI range 5.8-6.4). Limited proteolysis by trypsin eliminated the molecular weight differences between the subunits without substantially affecting either their isoelectric points or activity. Comparative peptide maps and amino acid analyses of the 35,000- and 38,000-Da subunits showed that they were very similar. The data indicate that a neutral peptide (approx 3000 Da) is responsible for the differences in subunit molecular weight and that the multiple sized and charged forms are variants of the same protein.  相似文献   

5.
Hemagglutinating activity can be identified in the plasma of different species of murrel fish. This activity may be divided into four types according to their agglutinability towards erythrocytes from different sources. Type I plasma agglutinates human blood group A erythrocytes, type II can agglutinate neuraminidase treated human A B O erythrocytes, type III shows no agglutinating activity towards human erythrocytes, while type IV agglutinates human erythrocytes non-specifically. All of them bind to DEAE-cellulose but elute out by different salt concentrations. Type IV plasma is found to be a combination of three separate hemagglutinins, which are separable by sequential binding to human A B O erythrocytes. Blood group A specific lectin activity is purified from this plasma using formalinised A group erythrocytes. The apparent homogeneity of this purified lectin is established by polyacrylamide gel electrophoresis, isoelectric focusing and immunodiffusion. This agglutinin is antigenically identical with that isolated from type I plasma by affinity chromatography on N-acetyl-D-galactosamine coupled to epoxy-activated cellulose column. Their molecular weights are also found to be identical (Mr 140,000) in polyacrylamide gel electrophoresis, having two identical subunits. Forssman glycolipid (0.03 mM) was found to be the most potent inhibitor of agglutination, although Gal beta 1-3 GalNAc (0.09 mM) is also a good inhibitor. Exhaustive dialysis of the purified lectin (hemagglutinin) against EDTA denatures it irreversibly by dissociating it to its subunit structure. Thus human A group agglutinating activity isolated from type I and type IV plasma are identical.  相似文献   

6.
Two superoxide dismutases (SOD I and SOD II) were purified from Acanthamoeba castellanii and characterized for several biochemical properties. Analysis of the primary structure and inhibition studies revealed that SOD I is iron SOD (Fe-SOD), with a molecular mass of 50 kDa, and SOD II is copper-zinc SOD (Cu,Zn-SOD), with a molecular mass of 38 kDa. Both enzymes have a homodimeric structure consisting of 2 identical subunits, each with a molecular mass of 26 and 19 kDa for SOD I and SOD II, respectively. The isoelectric points of SOD I and SOD II were 6.4 and 3.5, respectively, and there were no isoenzyme forms detected. Both enzymes show a broad optimal pH of 7.0-11.0. Because no differences were observed in the apparent molecular weight of SOD I after addition of the reducing agent 2-mercaptoethanol, the subunits do not appear to be linked covalently by disulfide bonds. However, the subunits of SOD II were covalently linked by intra- and interdisulfide bonds. Western blot analyses showed that the 2 enzymes have different antigenicity. Both enzymes occur as cytoplasmic and detergent-extractable fractions. These enzymes may be potential virulence factors of A. castellanii by acting both as antioxidants and antiinflammatory agents. These enzymes may be attractive targets for chemotherapy and immunodiagnosis of acanthamoebiasis.  相似文献   

7.
Five glutathione transferase (GST) forms were purified from human uterus by glutathione-affinity chromatography followed by chromatofocusing, and their structural, kinetic and immunological properties were investigated. Upon SDS/polyacrylamide slab gel electrophoresis all forms resulted composed of two subunits of identical molecular size. GST V (pI 4.5) is a dimer of 23-kDa subunits. GST I (pI 6.8) and GST IV (pI 4.9) are dimers of 24-kDa subunits whereas GST II (pI 6.1) and GST III (pI 5.5) are dimers of 26.5-kDa subunits. GST V accounts for about 85-90% of the activity whereas the other isoenzymes are present in trace quantities. On the basis of the molecular mass of the subunits, amino acid composition, substrate specificities, sensitivities to inhibitors, CD spectra and immunological studies, GST V appeared very similar to transferase pi. Structural and immunological studies provide evidence that GST IV is closely related to the less 'basic' transferase (GST pI 8.5) of human skin. Extensive similarities have been found between GST II and GST III. The comparison includes amino acid compositions, subunits molecular size and immunological properties. The two enzymes, however, are kinetically distinguishable. The data presented also indicate that GST II and GST III are related to transferase mu and to transferase psi of human liver. Even though GST I has a subunit molecular mass identical to GST IV, several lines of evidence, including catalytic and immunological properties, indicate that they are different from each other. GST I seems not to be related to any of known human transferases, suggesting that it may be specific for the uterus.  相似文献   

8.
The enzyme that catalyzes the reversible conversion of N-acetylglutamic γ-semialdehyde and l-glutamate to α-N-acetyl-l-ornithine and α-ketoglutarate, acetylornithine δ-transaminase, has been isolated in homogeneous form and crystallized from both the wild-type and the arginine-inducible strains of Escherichia coli W. The molecular weight of the wild-type transaminase is 119,000 while the molecular weight of the arginine-inducible enzyme is 61,000. However, the arginine-inducible acetylornithine δ-transaminase is not a breakdown product of the wild-type, arginine-repressible transaminase. Analysis of crude extracts of the wild-type and arginine-inducible strains by varying the acrylamide concentration in polyacrylamide disc gel electrophoresis showed that arginine-inducible and wild-type transaminases differed in ionic charge. Immunochemical analysis of the two transaminases showed that neither enzyme would cross-react with antibodies prepared against its counterpart. Treatment of the two enzymes with sodium dodecyl sulfate, followed by disc gel electrophoresis revealed that both transaminases were composed of 31,000-dalton subunits. Tryptic digestion of the two transaminases showed that nearly identical peptides were present. The overall data suggest that the wild-type and inducible transaminases were products of two different structural genes. The two transaminases have different molecular weights, ionic charges, and antigenic determinants, but both are composed of similar molecular weight subunits and show a high degree of similarity in amino acid content and peptide composition.  相似文献   

9.
A bovine counterpart to human prealbumin was purified from bovine serum by thiol-disulfide exchange chromatography on thiol-Sepharose 4B and affinity chromatography on human retinol-binding protein linked to Sepharose 4B. The bovine prealbumin had alpha1-mobility on agarose gel electrophoresis at pH 8.6. It has the same molecular weight as human prealbumin on gel filtration and consisted of subunits with a molecular weight of 12 500. This is compatible with a tetrameric structure for the bovine protein. Antiserum against human prealbumin cross-reacted with bovine prealbumin and vice versa. The bovine prealbumin formed at high ionic strength complexes with another bovine serum protein which were dissociated at low ionic strength. This property was used to isolate a protein from bovine serum, by chromatography on bovine prealbumin linked to Sepharose which cross-reacted with antiserum against human retinol-binding protein; had a molecular weight of 21 000 and alpha 2-mobility on agarose gel electrophoresis. It was concluded that the latter protein was a bovine retinol-binding protein.  相似文献   

10.
W G Carter  M E Etzler 《Biochemistry》1975,14(12):2685-2689
The subunits of the two molecular forms (A and B) of the Dolichos biflorus lectin were isolated by ion-exchange chromatography on DEAE-cellulose in 8.0 M urea. Subunits IA and IIA which comprise the predominant molecular form A of the lectin were found to have molecular weights of 27,700 and 27,300, respectively, as determined by sedimentation equilibrium studies in 8.0 M urea. These subunits have similar amino acid compositions and each have alanine at their amino-terminal ends. Comparison of the IA and IIA subunits by immunodiffusion against antisera to the seed extract as well as to subunits IA and IIA showed no antigenic differences between the two subunits. Carboxyl terminal analyses of subunits IA and IIA with carboxypeptidase A produced an essentially simultaneous release of both leucine and valine residues from subunit IA; no detectable amino acids were released from subunit IIA under identical conditions. The data suggest that the molecular form A of the lectin (molecular weight 113,000, Carter and Etzler, 1975) consists of four subunits with a possible stoichiometry of IA2IIA2. Other possible arrangements of the subunits are discussed.  相似文献   

11.
Ribosomal proteins from three mutant strains of Chlamydomonas reinhardi were analysed and compared by one-dimensional and two-dimensional gel electrophoresis. One mutant was streptomycin-sensitive the other two were streptomycin-resistant, one with a Mendelian the other with a non-Mendelian pattern of inheritance. In the 30-S subunits of chloroplast ribosomes approximately 25 proteins are found and in the 50-S subunits 34 proteins. The 40-S subunits of cytoplasmic ribosomes contain about 31 proteins and the 60-S subunits 44 proteins. The molecular weights of most proteins in all subunits are in the range of 10 000 to 35 000. However, the 60-S subunits contain in addition a protein of molecular weight 50 000 and the 30-S subunits show 6-7 bands of molecular weights from 50 000 to 83 000. The proteins of the cytoplasmic 80-S ribosomes or of their subunits from all three mutants are electrophoretically identical. The proteins of the 70-S organellar ribosomes and both of their subunits show distinct differences between the three strains. Our results indicate that organellar ribosomal proteins are in part controlled by nuclear DNA and in part by organellar DNA.  相似文献   

12.
In previous communications we have demonstrated that the subunits of normal human erythrocyte purine nucleoside phosphorylase can be resolved into four major (1–4) and two minor (1p and 2p) components with the same molecular weight but different apparent isoelectric points (and net ionic charge). The existence of subunits with different charge results in a complex isoelectric focusing pattern of the native erythrocytic enzyme. In contrast, the isoelectric focusing pattern of the native enzyme obtained from cultured human fibroblasts is simpler. The multiple native isoenzymes obtained from human erythrocytes and human brain have isoelectric points ranging from 5.0 to 6.4 and from 5.2 to 5.8, respectively, whereas cultured human fibroblasts have two major native isoenzymes with apparent isoelectric points of 5.1 and 5.6.Purine nucleoside phosphorylase has been purified at least a hundredfold from 35S-labeled cultured human fibroblasts. A two-dimensional electrophoretic analysis of the denatured purified normal fibroblast enzyme revealed that it consists mainly of subunit 1 (90%) with small amounts of subunits 2 (10%) and 3 (1%). This accounts for the observed differences between the native isoelectric focusing and the electrophoretic patterns of the erythrocyte and fibroblast enzymes. The purine nucleoside phosphorylase subunit 1 is detectable in the autoradiogram from a two-dimensional electrophoretic analysis of a crude, unpurified extract of 35S-labeled cultured normal human fibroblasts. The fibroblast phosphorylase coincides with the erythrocytic subunit 1 of the same enzyme, and the cultured fibroblasts of a purine nucleoside phosphorylase deficient patient (patient I) lack this protein component, genetically confirming the identity of the purine nucleoside phosphorylase subunit in cultured fibroblasts.This work was supported by a grant from the National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, United States Public Health Service. L. J. G. is supported by a fellowship from the National Institute of Child Health and Human Development. D. W. M. is an Investigator, Howard Hughes Medical Institute.  相似文献   

13.
RT1.B Class II molecules, comparable to I-A and I-E molecules in mice, have been characterized by two-dimensional (2D) gel electrophoresis for seven rat strains expressing different RT1 haplotypes. RT1.B molecules were immunoprecipitated from radiolabeled rat lymphocyte preparations with mouse monoclonal antibodies reactive with mouse I-Ab antigens and I-Ek antigens. For each RT1 haplotype, two I-A-like subunits, alpha and beta, and two I-E-like subunits, gamma and delta, have been identified. 2D gel analysis of RT1.B molecules from different strains in paired combinations reveals that, with a few notable exceptions, the alpha, beta, and delta subunits associated with different RT1 haplotypes are characterized by unique 2D gel spot patterns. In contrast, the gamma subunits of all RT1.B haplotypes appear identical. This evidence confirms and extends our previous analysis of RT1.B molecules by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and suggests a high level of polymorphism for genes in the RT1.B region, with the exception of the RT1.Bc gene encoding gamma. Interestingly, three rat strains appear exceptional in the identity of their alpha, gamma, and delta subunits, which suggests that these strains express closely related RT1 haplotypes derived from a common progenitor.  相似文献   

14.
Summary The ribosomal proteins fromE. coli strains B, C, K12 (A19), and MRE600 were extracted and analyzed by two-dimensional polyacrylamide gel electrophoresis. All four strains were found to be indistinguishable in their 50S ribosomal protein components, while there were differences among the 30S proteins. Strains K and B differ in protein S5 and S7. Strain C differs from strain B in protein S5 and from strain K in protein S7. MRE600 appears to be identical to strain C in respect to its ribosomal protein pattern. It was furthermore found that proteins S7 from strain K and B differ extensively in respect to size, charge, amino acid composition and immunological properties. The rather remote relationship between these two analogous proteins is quite remarkable when contrasted with the striking similarity in all but one of the other 30S and 50S proteins of the strains.Dedicated to the 65th birthday of Prof. G. Melchers.  相似文献   

15.
The alpha-D-galactopyranosyl-binding lectin previously purified from Bandeiraea simplicifolia seeds (Hayes, C.H., and Goldstein, I.J. (1974) J. Biol. Chem. 249, 1904) is shown to consist of five isolectins separable on polyacrylamide gel electrophoresis at pH 9.5. The isolectins are tetrameric structures composed of various combinations of two different glycoprotein subunits designated A and B. The A and B subunits appear to be immunochemically indistinguishable against rabbit antisera prepared from the isolectin mixture. The A subunit contains no methionine, whereas the B subunit contains 1 residue. The subunits migrate differently on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and, although each subunit contains 1 residue of cysteine, they react differently toward 5,5'-dithiobis(2-nitrobenzoic acid). The carbohydrate binding specificity of the two subunits differs significantly: the A subunit exhibits a primary specificity for alpha-D-GalNAcp but also reacts with alpha-D-Galp units, whereas the B subunit shows a sharp specificity toward alpha-D-Galp residues. The differences in carbohydrate binding specificity were exploited in separating the isolectins. B. simplicifolia I isolectins (A4) and (A3B) were purified on a Bio-Gel melibionate column, and (A2B2), (AB3), and (B4) were separated on a column of insolubilized blood group A substance.  相似文献   

16.
Three forms of the normal human plasma fibrinogen gamma-chain which differ in molecular weight have been purified. Plasma fibrinogen was separated by ion exchange chromatography on DEAE-Sephacel into three populations of molecules, each with a unique gamma-chain composition. Following reduction and S-carboxymethylation, the fibrinogen polypeptide chains in each chromatographic peak were separated by ion exchange chromatography on DEAE-Sephacel and identified following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The A alpha, B beta and smallest gamma-chain (gamma 50) eluted at progressively higher ionic strengths, but the elution positions of A alpha, B beta and gamma 50 chains were identical for fibrinogen from each of the three different chromatographic fractions. The unique gamma chain of fibrinogen in the second chromatographic peak (gamma 55) eluted at an ionic strength higher than that of the gamma 50 chain, while the largest gamma-chain (gamma 57.5), which was contained only in the third chromatographic peak of fibrinogen, eluted at the highest ionic strength. The higher ionic strengths needed to elute fibrinogen in the second and third peaks was paralleled by the higher ionic strengths needed to elute the gamma-chains unique to them, suggesting that the gamma-chain composition of the three fibrinogen fractions accounted for their differential binding to the ion exchange resin. Following desialation with neuraminidase, the differences in electrophoretic mobilities between the three gamma-chain forms was maintained, indicating that differential migration on SDS-polyacrylamide gel electrophoresis was not due to variation in sialic acid content.  相似文献   

17.
A cholera-like enterotoxin was purified from Vibrio cholerae O139 strain AI-1841 isolated from a diarrheal patient in Bangladesh. Its characteristics were compared with that of cholera toxins (CTs) of classical strain 569B and El Tor strain KT25. Al-1841 produced as much toxin as O1 strains. The toxins were indistinguishable in terms of their migration profiles in conventional polyacrylamide gel disc electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectrofocusing as well as their affinity for hydroxyapatite. The skin permeability factor activity and the fluid accumulation induced in rabbit ileal loops of the toxin of AI-1841 were identical to those of the CTs. Three toxins equally reacted against anti-569B CT antiserum in Western blotting, and their B subunits formed a precipitin line against any anti-B subunit antiserum by double gel immunodiffusion. Anti-569B CTB antibody neutralized the three toxins in their PF activities and enterotoxicities. The amino acid sequence of 1841 toxin B subunit was identical with that of KT25 CTB, corresponding to the DNA sequence of ctxB from El Tor strains of the seventh pandemic. We concluded 1841 toxin was identical to CT of the seventh pandemic El Tor vibrios.  相似文献   

18.
Charge heterogeneity of cholera toxin and its subunits   总被引:1,自引:0,他引:1  
Abstract Analytical isoelectric focusing (IEF) in thin layers of polyacrylamide gels resolved cholera toxin into 3 isomeric forms differing in charge (isoelectric points 6.80, 6.65 and 6.55). All these forms had identical molecular weights, and were also antigenically similar, as demonstrated by their reactivity to antisera to cholera toxin. Both the B and A subunits possessed charge heterogeneity. The B subunit was detected in a free form when a solution of cholera toxin was aged for a few days. Antisera to cholera toxin, irrespective of mode of immunisation, contained antibodies to both the intact cholera toxin and the free B subunit as demonstrated by the immunoblotting technique based on IEF.  相似文献   

19.
Wall-associated protein antigens of Streptococcus mutans.   总被引:64,自引:0,他引:64  
When heat-killed whole organisms of Streptococcus mutans strain Ingbritt (serotype c) were injected into rabbits, antibodies to at least 12 antigens were detectable by crossed immunoelectrophoresis. In contrast, when rabbits were immunized with organisms which had been subjected to extraction with the detergent sodium dodecyl sulphate (SDS), antibodies to only two protein antigens were found. These two proteins (A and B), while existing in a form apparently closely associated with peptidoglycan, could also be recovered from homogenates of whole organisms after sonication and from culture filtrates. Antigenic material was excreted throughout growth. SDS-polyacrylamide gradient gel electrophoresis showed A to have a molecular weight of 29 000, while B had a molecular weight of 190 000. Antigen B was purified to apparent homogeneity as judged by SDS-polyacrylamide gel electrophoresis and isoelectric focusing. All of six strains of serotype c examined produced antigen B. Strains of serotypes e and f also produce antigenically identical proteins and strains of serotypes d and g produce proteins which cross-reacted with antigen B. Antigen B was specifically precipitated by rabbit antiserum to human heart tissue.  相似文献   

20.
The subunits of purified yeast RNA polymerases I, II and III have been analyzed by two-dimensional polyacrylamide gel electrophoretic subunit mapping techniques. The results suggest that polymerases I and III have two subunits in common, the 41,000 and 20,000 dalton peptides, which are not present in polymerase III. The 14,500 dalton peptide by all criteria is identical in polymerases I, II and III. The 28,000 and 24,000 subunits appear identical in polymerases I and II but have different charge properties in polymerase III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号