首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate PCR-generated artifacts (i.e., chimeras, mutations, and heteroduplexes) with the 16S ribosomal DNA (rDNA)-based cloning approach, a model community of four species was constructed from alpha, beta, and gamma subdivisions of the division Proteobacteria as well as gram-positive bacterium, all of which could be distinguished by HhaI restriction digestion patterns. The overall PCR artifacts were significantly different among the three Taq DNA polymerases examined: 20% for Z-Taq, with the highest processitivity; 15% for LA-Taq, with the highest fidelity and intermediate processitivity; and 7% for the conventionally used DNA polymerase, AmpliTaq. In contrast to the theoretical prediction, the frequency of chimeras for both Z-Taq (8.7%) and LA-Taq (6.2%) was higher than that for AmpliTaq (2.5%). The frequencies of chimeras and of heteroduplexes for Z-Taq were almost three times higher than those of AmpliTaq. The total PCR artifacts increased as PCR cycles and template concentrations increased and decreased as elongation time increased. Generally the frequency of chimeras was lower than that of mutations but higher than that of heteroduplexes. The total PCR artifacts as well as the frequency of heteroduplexes increased as the species diversity increased. PCR artifacts were significantly reduced by using AmpliTaq and fewer PCR cycles (fewer than 20 cycles), and the heteroduplexes could be effectively removed from PCR products prior to cloning by polyacrylamide gel purification or T7 endonuclease I digestion. Based upon these results, an optimal approach is proposed to minimize PCR artifacts in 16S rDNA-based microbial community studies.  相似文献   

2.
The success rate of diagnostic polymerase chain reaction (PCR) analysis is lowered by inhibitory substances present in the samples. Recently, we showed that tolerance to PCR inhibitors in crime scene saliva stains can be improved by replacing the standard DNA polymerase AmpliTaq Gold with alternative DNA polymerase-buffer systems (Hedman et al., BioTechniques 47 (2009) 951-958). Here we show that blending inhibitor-resistant DNA polymerase-buffer systems further increases the success rate of PCR for various types of real crime scene samples showing inhibition. For 34 of 42 “inhibited” crime scene stains, the DNA profile quality was significantly improved using a DNA polymerase blend of ExTaq Hot Start and PicoMaxx High Fidelity compared with AmpliTaq Gold. The significance of the results was confirmed by analysis of variance. The blend performed as well as, or better than, the alternative DNA polymerases used separately for all tested sample types. When used separately, the performance of the DNA polymerases varied depending on the nature of the sample. The superiority of the blend is discussed in terms of complementary effects and synergy between the DNA polymerase-buffer systems.  相似文献   

3.
Although it has been recognized that PCR amplification of mixed templates may generate sequence artifacts, the mechanisms of their formation, frequency and potential elimination have not been fully elucidated. Here evidence is presented for heteroduplexes as a major source of artifacts in mixed-template PCR. Nearly equal proportions of homoduplexes and heteroduplexes were observed after co-amplifying 16S rDNA from three bacterial genomes and analyzing products by constant denaturing capillary electrophoresis (CDCE). Heteroduplexes became increasingly prevalent as primers became limiting and/or template diversity was increased. A model exploring the fate of cloned heteroduplexes during MutHLS-mediated mismatch repair in the Escherichia coli host demonstrates that the diversity of artifactual sequences increases exponentially with the number of both variable nucleotides and of original sequence variants. Our model illustrates how minimization of heteroduplex molecules before cloning may reduce artificial genetic diversity detected during sequence analysis by clone screening. Thus, we developed a method to eliminate heteroduplexes from mixed-template PCR products by subjecting them to ‘reconditioning PCR’, a low cycle number re-amplification of a 10-fold diluted mixed-template PCR product. This simple modification to the protocol may ensure that sequence richness encountered in clone libraries more closely reflects genetic diversity in the original sample.  相似文献   

4.
The PCR is an extremely powerful method for detecting microorganisms. However, its full potential as a rapid detection method is limited by the inhibition of the thermostable DNA polymerase from Thermus aquaticus by many components found in complex biological samples. In this study, we have compared the effects of known PCR-inhibiting samples on nine thermostable DNA polymerases. Samples of blood, cheese, feces, and meat, as well as various ions, were added to PCR mixtures containing various thermostable DNA polymerases. The nucleic acid amplification capacity of the nine polymerases, under buffer conditions recommended by the manufacturers, was evaluated by using a PCR-based detection method for Listeria monocytogenes in the presence of purified template DNA and different concentrations of PCR inhibitors. The AmpliTaq Gold and the Taq DNA polymerases from Thermus aquaticus were totally inhibited in the presence of 0.004% (vol/vol) blood in the PCR mixture, while the HotTub, Pwo, rTth, and Tfl DNA polymerases were able to amplify DNA in the presence of 20% (vol/vol) blood without reduced amplification sensitivity. The DNA polymerase from Thermotoga maritima (Ultma) was found to be the most susceptible to PCR inhibitors present in cheese, feces, and meat samples. When the inhibitory effect of K and Na ions was tested on the nine polymerases, HotTub from Thermus flavus and rTth from Thermus thermophilus were the most resistant. Thus, the PCR-inhibiting effect of various components in biological samples can, to some extent, be eliminated by the use of the appropriate thermostable DNA polymerase.  相似文献   

5.
The contribution of PCR artifacts to 16S rRNA gene sequence diversity from a complex bacterioplankton sample was estimated. Taq DNA polymerase errors were found to be the dominant sequence artifact but could be constrained by clustering the sequences into 99% sequence similarity groups. Other artifacts (chimeras and heteroduplex molecules) were significantly reduced by employing modified amplification protocols. Surprisingly, no skew in sequence types was detected in the two libraries constructed from PCR products amplified for different numbers of cycles. Recommendations for modification of amplification protocols and for reporting diversity estimates at 99% sequence similarity as a standard are given.  相似文献   

6.
The present study investigated cDNA chimeras using two closely related members of the rice secretory protein gene family as an example. The chimeras detected in initial cDNA products that were amplified using LA Taq polymerase involved two categories: single-site type and multiple-site type with the frequency being about 20% and 3%, respectively. Further investigation revealed that PCR buffer additives and type of DNA polymerase had a major effect on the formation of chimeras in mixed-template amplification. Heteroduplex repair by microbial DNA repair systems in cDNA cloning was confirmed to produce the chimeras too, but it was not the major source.  相似文献   

7.
Ligation-Mediated Polymerase Chain Reaction (LMPCR) is the most sensitive sequencing technique available to map single-stranded DNA breaks at the nucleotide level of resolution using genomic DNA. LMPCR has been adapted to map DNA damage and reveal DNA–protein interactions inside living cells. However, the sequence context (GC content), the global break frequency and the current combination of DNA polymerases used in LMPCR affect the quality of the results. In this study, we developed and optimized an LMPCR protocol adapted for Pyrococcus furiosus exo DNA polymerase (Pfu exo). The relative efficiency of Pfu exo was compared to T7-modified DNA polymerase (Sequenase 2.0) at the primer extension step and to Thermus aquaticus DNA polymerase (Taq) at the PCR amplification step of LMPCR. At all break frequencies tested, Pfu exo proved to be more efficient than Sequenase 2.0. During both primer extension and PCR amplification steps, the ratio of DNA molecules per unit of DNA polymerase was the main determinant of the efficiency of Pfu exo, while the efficiency of Taq was less affected by this ratio. Substitution of NaCl for KCl in the PCR reaction buffer of Taq strikingly improved the efficiency of the DNA polymerase. Pfu exo was clearly more efficient than Taq to specifically amplify extremely GC-rich genomic DNA sequences. Our results show that a combination of Pfu exo at the primer extension step and Taq at the PCR amplification step is ideal for in vivo DNA analysis and DNA damage mapping using LMPCR.  相似文献   

8.
The known archaeal family B DNA polymerases are unable to participate in the PCR in the presence of uracil. Here, we report on a novel archaeal family B DNA polymerase from Nanoarchaeum equitans that can successfully utilize deaminated bases such as uracil and hypoxanthine and on its application to PCR. N. equitans family B DNA polymerase (Neq DNA polymerase) produced λ DNA fragments up to 10 kb with an approximately 2.2-fold-lower error rate (5.53 × 10−6) than Taq DNA polymerase (11.98 × 10−6). Uniquely, Neq DNA polymerase also amplified λ DNA fragments using dUTP (in place of dTTP) or dITP (partially replaced with dGTP). To increase PCR efficiency, Taq and Neq DNA polymerases were mixed in different ratios; a ratio of 10:1 efficiently facilitated long PCR (20 kb). In the presence of dUTP, the PCR efficiency of the enzyme mixture was two- to threefold higher than that of either Taq and Neq DNA polymerase alone. These results suggest that Neq DNA polymerase and Neq plus DNA polymerase (a mixture of Taq and Neq DNA polymerases) are useful in DNA amplification and PCR-based applications, particularly in clinical diagnoses using uracil-DNA glycosylase.  相似文献   

9.
Pseudomonas species are plant, animal, and human pathogens; exhibit plant pathogen-suppressing properties useful in biological control; or express metabolic versatilities valued in biotechnology and bioremediation. Specific detection of Pseudomonas species in the environment may help us gain a more complete understanding of the ecological significance of these microorganisms. The objective of this study was to develop a PCR protocol for selective detection of Pseudomonas (sensu stricto) in environmental samples. Extensive database searches identified a highly selective PCR primer pair for amplification of Pseudomonas 16S rRNA genes. A protocol that included PCR amplification and restriction analysis, a general cloning and sequencing strategy, and phylogenetic analyses was developed. The PCR protocol was validated by testing 50 target and 14 nontarget pure cultures, which confirmed the selectivity to 100%. Further validation used amplification of target sequences from purified bulk soil DNA followed by cloning of PCR products. Restriction analysis with HaeIII revealed eight different fragmentation patterns among 36 clones. Sequencing and phylogenetic analysis of 8 representative clones indicated that 91.7% of the products were derived from target organisms of the PCR protocol. Three patterns, representing only 8.3% of the 36 clones, were derived from non-Pseudomonas or chimeric PCR artifacts. Three patterns, representing 61.1% of the clones, clustered with sequences of confirmed Pseudomonas species, whereas two patterns, representing 30.6% of the clones, formed a novel phylogenetic cluster closely associated with Pseudomonas species. The results indicated that the Pseudomonas-selective PCR primers were highly specific and may represent a powerful tool for Pseudomonas population structure analyses and taxonomic confirmations.  相似文献   

10.
Localized sets of random point mutations generated by PCR amplification can be transferred efficiently to the chromosome of Acinetobacter ADP1 (also known as strain BD413) by natural transformation. The technique does not require cloning of PCR fragments in plasmids: PCR-amplified DNA fragments are internalized by cells and directly incorporated into their genomes by homologous recombination. Previously such procedures for random mutagenesis could be applied only to Acinetobacter genes affording the selection of mutant phenotypes. Here we describe the construction of a vector and recipient that allow for mutagenesis, recovery, and expression of heterologous genes that may lack a positive selection. The plasmid carries an Acinetobacter chromosomal segment interrupted by a multiple cloning site next to a kanamycin resistance marker. The insertion of heterologous DNA into the multiple cloning site prepares the insert as a target for PCR mutagenesis. PCR amplifies the kanamycin resistance marker and a flanking region of Acinetobacter DNA along with the insert of heterologous DNA. Nucleotide sequence identity between the flanking regions and corresponding chromosomal segments in an engineered Acinetobacter recipient allows homologous recombination of the PCR-amplified DNA fragments into a specific chromosomal docking site from which they can be expressed. The recipient strain contains only a portion of the kanamycin resistance gene, so donor DNA containing both this gene and the mutagenized insert can be selected by demanding growth of recombinants in the presence of kanamycin. The effectiveness of the technique was demonstrated with the relatively GC-rich Pseudomonas putida xylE gene. After only one round of PCR amplification (35 cycles), donor DNA produced transformants of which up to 30% carried a defective xylE gene after growth at 37°C. Of recombinant clones that failed to express xylE at 37°C, about 10% expressed the gene when grown at 22°C. The techniques described here could be adapted to prepare colonies with an altered function in any gene for which either a selection or a suitable phenotypic screen exists.  相似文献   

11.
Insertion of the T3 DNA polymerase thioredoxin binding domain (TBD) into the distantly related thermostable Taq DNA polymerase at an analogous position in the thumb domain, converts the Taq DNA polymerase from a low processive to a highly processive enzyme. Processivity is dependent on the presence of thioredoxin. The enhancement in processivity is 20–50-fold when compared with the wild-type Taq DNA polymerase or to the recombinant polymerase in the absence of thioredoxin. The recombinant Taq DNA pol/TBD is thermostable, PCR competent and able to copy repetitive deoxynucleotide sequences six to seven times more faithfully than Taq DNA polymerase and makes 2–3-fold fewer AT→GC transition mutations.  相似文献   

12.
For many years, Taq polymerase has served as the stalwart enzyme in the PCR amplification of DNA. However, a major limitation of Taq is its inability to amplify damaged DNA, thereby restricting its usefulness in forensic applications. In contrast, Y-family DNA polymerases, such as Dpo4 from Sulfolobus solfataricus, can traverse a wide variety of DNA lesions. Here, we report the identification and characterization of five novel thermostable Dpo4-like enzymes from Acidianus infernus, Sulfolobus shibatae, Sulfolobus tengchongensis, Stygiolobus azoricus and Sulfurisphaera ohwakuensis, as well as two recombinant chimeras that have enhanced enzymatic properties compared with the naturally occurring polymerases. The Dpo4-like polymerases are moderately processive, can substitute for Taq in PCR and can bypass DNA lesions that normally block Taq. Such properties make the Dpo4-like enzymes ideally suited for the PCR amplification of damaged DNA samples. Indeed, by using a blend of Taq and Dpo4-like enzymes, we obtained a PCR amplicon from ultraviolet-irradiated DNA that was largely unamplifyable with Taq alone. The inclusion of thermostable Dpo4-like polymerases in PCRs, therefore, augments the recovery and analysis of lesion-containing DNA samples, such as those commonly found in forensic or ancient DNA molecular applications.  相似文献   

13.
Transformation-associated recombination (TAR) is a cloning technique that allows specific chromosomal regions or genes to be isolated directly from genomic DNA without prior construction of a genomic library. This technique involves homologous recombination during spheroplast transformation between genomic DNA and a TAR vector that has 5′ and 3′ gene targeting sequences (hooks). Typically, TAR cloning produces positive YAC recombinants at a frequency of ~0.5%; the positive clones are identified by PCR or colony hybridization. This paper describes a novel TAR cloning procedure that selects positive clones by positive and negative genetic selection. This system utilizes a TAR vector with two targeting hooks, HIS3 as a positive selectable marker, URA3 as a negative selectable marker and a gene-specific sequence called a loop sequence. The loop sequence lies distal to a targeting hook sequence in the chromosomal target, but proximal to the targeting hook and URA3 in the TAR vector. When this vector recombines with chromosomal DNA at the gene-specific targeting hook, the recombinant YAC product carries two copies of the loop sequence, therefore, the URA3 negative selectable marker becomes mitotically unstable and is lost at high frequency by direct repeat recombination involving the loop sequence. Positive clones are identified by selecting against URA3. This method produces positive YAC recombinants at a frequency of ~40%. This novel TAR cloning method provides a powerful tool for structural and functional analysis of complex genomes.  相似文献   

14.
A defined template mixture of seven closely related 16S-rDNA clones was used in a PCR-cloning experiment to assess and track sources of artifactual sequence variation in 16S rDNA clone libraries. At least 14% of the recovered clones contained aberrations. Artifact sources were polymerase errors, a mutational hot spot, and cloning of heteroduplexes and chimeras. These data may partially explain the high degree of microheterogeneity typical of sequence clusters detected in environmental clone libraries.  相似文献   

15.
Artificial recombinants can be generated during PCR when more than two genetically distinct templates coexist in a single PCR reaction. These recombinant amplicons can lead to the false interpretation of genetic diversity and incorrect identification of biological phenotypes that do not exist in vivo. We investigated how recombination between 2 or 35 genetically distinct HIV-1 genomes was affected by different PCR conditions using the parallel allele-specific sequencing (PASS) assay and the next generation sequencing method. In a standard PCR condition, about 40% of amplicons in a PCR reaction were recombinants. The high recombination frequency could be significantly reduced if the number of amplicons in a PCR reaction was below a threshold of 1013–1014 using low thermal cycles, fewer input templates, and longer extension time. Heteroduplexes (each DNA strand from a distinct template) were present at a large proportion in the PCR products when more thermal cycles, more templates, and shorter extension time were used. Importantly, the majority of recombinants were identified in heteroduplexes, indicating that the recombinants were mainly generated through heteroduplexes. Since prematurely terminated extension fragments can form heteroduplexes by annealing to different templates during PCR amplification, recombination has a better chance to occur with samples containing different genomes when the number of amplicons accumulate over the threshold. New technologies are warranted to accurately characterize complex quasispecies gene populations.  相似文献   

16.
Random clones of 16S ribosomal DNA gene sequences were isolated after PCR amplification with eubacterial primers from total genomic DNA recovered from samples of the colonic lumen, colonic wall, and cecal lumen from a pig. Sequences were also obtained for cultures isolated anaerobically from the same colonic-wall sample. Phylogenetic analysis showed that many sequences were related to those of Lactobacillus or Streptococcus spp. or fell into clusters IX, XIVa, and XI of gram-positive bacteria. In addition, 59% of randomly cloned sequences showed less than 95% similarity to database entries or sequences from cultivated organisms. Cultivation bias is also suggested by the fact that the majority of isolates (54%) recovered from the colon wall by culturing were related to Lactobacillus and Streptococcus, whereas this group accounted for only one-third of the sequence variation for the same sample from random cloning. The remaining cultured isolates were mainly Selenomonas related. A higher proportion of Lactobacillus reuteri-related sequences than of Lactobacillus acidophilus- and Lactobacillus amylovorus-related sequences were present in the colonic-wall sample. Since the majority of bacterial ribosomal sequences recovered from the colon wall are less than 95% related to known organisms, the roles of many of the predominant wall-associated bacteria remain to be defined.  相似文献   

17.
Homologous recombination in yeast can be exploited to reliably generate libraries of >107 transformants from a pool of PCR products and a linearized plasmid vector. Homology in the PCR insertion products drives shuffling of these genes in vivo by yeast homologous recombination. Two scFvs that share 89.8% homology were shuffled in vivo by homologous recombination, and chimeric genes were generated regardless of whether or not one of the scFv PCR products lacked 5′ homology to the cut vector and the second scFv PCR product lacked 3′ homology to the cut vector, or both PCR products had both 5′ and 3′ homology to the cut vector. A majority of the chimeras had single crossovers; however, double and triple crossovers were isolated. Crossover points were evenly distributed in the hybrids created and homology of as little as two nucleotides was able to produce a chimeric clone. The numbers of clones isolated with a given number of crossovers was approximated well by a Poisson distribution. Transformation efficiencies for the chimeric libraries were of the order of 104–105 transformants per microgram of insert, which is the same order of magnitude as when a single PCR product is inserted alone into the display vector by homologous recombination. This method eliminates ligation and Escherichia coli transformation steps of previous methods for generating yeast-displayed libraries, requires fewer PCR cycles than in vitro DNA shuffling and, unlike site-specific recombination methods, allows for recombination anywhere that homology exists between the genes to be recombined. This simple technique should prove useful for protein engineering in general and antibody engineering, specifically in yeast.  相似文献   

18.
A new strategy for the detection of infectious Cryptosporidium parvum oocysts in water samples, which combines immunomagnetic separation (IMS) for recovery of oocysts with in vitro cell culturing and PCR (CC-PCR), was field tested with a total of 122 raw source water samples and 121 filter backwash water grab samples obtained from 25 sites in the United States. In addition, samples were processed by Percoll-sucrose flotation and oocysts were detected by an immunofluorescence assay (IFA) as a baseline method. Samples of different water quality were seeded with viable C. parvum to evaluate oocyst recovery efficiencies and the performance of the CC-PCR protocol. Mean method oocyst recoveries, including concentration of seeded 10-liter samples, from raw water were 26.1% for IMS and 16.6% for flotation, while recoveries from seeded filter backwash water were 9.1 and 5.8%, respectively. There was full agreement between IFA oocyst counts of IMS-purified seeded samples and CC-PCR results. In natural samples, CC-PCR detected infectious C. parvum in 4.9% (6) of the raw water samples and 7.4% (9) of the filter backwash water samples, while IFA detected oocysts in 13.1% (16) of the raw water samples and 5.8% (7) of the filter backwash water samples. All CC-PCR products were confirmed by cloning and DNA sequence analysis and were greater than 98% homologous to the C. parvum KSU-1 hsp70 gene product. DNA sequence analysis also revealed reproducible nucleotide substitutions among the hsp70 fragments, suggesting that several different strains of infectious C. parvum were detected.  相似文献   

19.
Cryptosporidium parvum oocysts were recovered by immunomagnetic separation from six artificially contaminated foods. Two DNA isolation methods were subsequently evaluated by PCR. The FTA Concentrator-PS filter provided rapid and reproducible detection, although variability increased at lower inoculum levels (88% and 15% detection in high- and low-inoculum-level samples, respectively). Total DNA extraction generated consistent results at all oocyst levels but resulted in longer analysis time (100% and 59% detection in high- and low-inoculum-level samples, respectively). Also reflected in this study was that the matrix played an important role in the ability to recover oocysts, as sample turbidity, pH, and PCR inhibitors all influenced detection.  相似文献   

20.
Lowell JL  Klein DA 《BioTechniques》2000,28(4):676-8, 680, 681
Microbial community analyses using molecular techniques, such as PCR followed by genomic library construction, have been helpful in better understanding microbial communities. This is especially critical in ecological systems where most of the microbes present cannot be cultured using traditional techniques. Unfortunately, there are problems associated with the use of such molecular techniques for the analysis of microbial community structure, primarily from the frequent formation of PCR artifacts. Multitemplate PCR is often subject to errors such as heteroduplex formation that is generated during the amplification of a particular gene from a mixed community of DNA. Based on work in this laboratory, heteroduplexes may be resolved before carrying out genomic library construction by including a digestion step with T7 endonuclease I. Here, the 18S rDNA gene of fungi was amplified from soil community DNA and digested with T7 endonuclease I to resolve any heteroduplexes present in the PCR product before cloning. These samples were compared with replicates that did not receive the T7 endonuclease I treatment. Digestion of the amplified community 18S rDNA with 10 U T7 endonuclease I/microgram DNA prior to cloning eliminated heteroduplexes, leaving only the desired clones. Without the T7 endonuclease I treatment, heteroduplexes were produced in approximately 10% of the recombinants screened. The addition of this step may eliminate heteroduplexes from PCR products and ensure that subsequent genomic library construction is not compromised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号