首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel technique for affinity precipitation has been developed in which multimeric target proteins are precipitated as a result of network formation by polymer-conjugated ligands (polyligands). A polyligand precipitant for avidin was synthesized by conjugation of biotin to a polyacrylamide-based backbone. The effects of mixing conditions, ligand substitution frequency, and molecular weight on affinity precipitation were examined using the biotin-PAAm precipitant. Biotin was replaced by iminobiotin to study the effect of the ligand-protein dissociation constant o affinity precipitation. The iminobiotin-PAAm precipitant was also used to examine the reversibility of the precipitation and recovery of the target protein after precipitation. (c) 1993 Wiley & Sons, Inc.  相似文献   

2.
为应对治疗性抗体快速增长的市场需求,抗体上游细胞培养规模和表达量水平已显著提高,而下游纯化工艺的生产效率则相对落后,下游处理能力已成为限制抗体产能的瓶颈。本研究以单克隆抗体mab-X为实验材料,优化了细胞培养液、低pH病毒灭活收集液2种模式的正辛酸(caprylic acid,CA)沉淀工艺条件,并研究了CA处理去除聚体、CA处理灭活病毒等2种应用,在小试的基础上,采用低pH病毒灭活收集液CA沉淀的模式进行了500 L细胞培养规模生产放大研究,对沉淀前后的产品质量和收率进行了检测和对比。结果显示,两种模式的CA沉淀均可显著降低宿主细胞蛋白(host cell protein,HCP)残留和聚体含量,在聚体去除实验中CA沉淀可去除约15%的聚体,病毒灭活研究显示CA对逆转录模型病毒具有完全的病毒灭活能力。在放大生产规模中,下游依次进行了深层过滤收获、亲和层析、低pH病毒灭活、CA沉淀及深层过滤、阳离子交换层析,CA沉淀过程中混合时间和搅拌速度显著影响CA沉淀效果,CA沉淀处理后低pH病毒灭活液中的HCP残留量降低了895倍,沉淀后产品纯度和HCP残留均已控制在单克隆抗体质量要求范围内,CA沉淀可以减少传统纯化工艺中的一个精纯步骤。总之,下游工艺中采用CA沉淀,能够精简传统纯化工艺,并完全满足mab-X的纯化质量要求,而且能提高生产效率、降低生产成本。本研究结果将推动CA沉淀在单克隆抗体下游纯化生产中的应用,为解决目前传统纯化工艺的问题提供参考。  相似文献   

3.
Aqueous two-phase extraction incorporated affinity precipitation was examined as a technique for protein purification. An enteric coating polymer, Eudragit S100, was employed as a ligand carrier. Eudragit was specifically partitioned to the top phase in the aqueous two-phase systems. For application of this method to purification of recombinant protein A using human IgG coupled to Eudragit in an aqueous two-phase system, 80% of protein A added was recovered with 81% purity. The purity was enhanced 26-fold by thid method. The IgG-Eudragit could be used repeatedly for the purification process. This seperation method should be applicable to industrial-scale purification as a new purification procedure combining the advantages and compensating for the disadvantages of the aqueous two-phase method and affinity precipitation method. (c) 1992 John Wiley & Sons, Inc.  相似文献   

4.
A simple procedure for the purification of an IgG-type monoclonal antibody by affinity precipitation using Eudragit S-100 is presented. The ligand, a microbial lipase previously used as antigen, was coupled to the polymer at a concentration of 40 mg lipase/g Eudragit. This macroligand was reversibly precipitated by manipulating the pH at values higher and lower than 4.8. The effects of polymer concentration and dilution of hybridoma culture supernatant on the overall precipitation process were evaluated. The best purification factor was achieved with a polymer concentration of 0.1% (w/v) and a supernatant dilution of 1:3. The preliminary studies reported here enabled the purification of a monoclonal antibody in one step with an activity yield (by ELISA) of 50%-55% and a purification factor of ca 6.  相似文献   

5.
Metal chelate affinity precipitation (MCAP) has been successfully developed as a simple purification process for proteins that have affinity for metal ions. The present lack of widespread applications for this technique as compared to immobilized metal affinity chromatography (IMAC) may be related to the scarcity of well-characterized metal affinity macroligands (AML) and their applications to the number of different purification systems. In the present work we describe a detailed study of a new purification system using metal-loaded thermoresponsive copolymers as AML. The copolymers of vinylimidazole (VI) with N-isopropylacrylamide (NIPAM) were synthesized by radical polymerization with imidazole contents of 15 and 24 mol%. When loaded with Cu(II) and Ni(II) ions the copolymers selectively precipitated extracellularly expressed histidine-tagged single-chain Fv-antibody fragments (His(6)-scFv fragments) from the fermentation broth free from E. coli cells. Precipitation was induced by salt at mild temperatures and the bound antibody fragments were recovered by dissolving the protein-polymer complex in EDTA buffer and subsequent reprecipitation of the polymer. His(6)-scFv fragments were purified with yields of 91 and 80% and purification folds of 16 and 21 when Cu(II) and Ni(II) copolymers were used, respectively. The protein precipitation capacity of the Ni(II) copolymer showed a dependence on the VI concentration in the copolymer. The SDS-PAGE pattern showed significant purification of the antibody fragments.  相似文献   

6.
A thermo-responsive polymer on which maltose was covalently immobilized as an affinity ligand was newly synthesized for purification of thermolabile proteins from the crude solution by affinity precipitation. Among the thermo-responsive polymers synthesized as carriers for adsorbent, poly(N-acryloylpiperidine)-cysteamine (pAP) has a lower critical solution temperature (LCST) of around 4 degrees C, at which its solubility exhibits a sharp change. Adsorbent for affinity precipitation was prepared by combining pAP with maltose using trimethylamine-borane as a reducing reagent. This adsorbent (pAPM) obtained showed a good solubility response: pAPM in the basal buffer (pH 7.0) became soluble below 4 degrees C and was completely insoluble above 8 degrees C. The affinity precipitation method using pAPM consisted of the following four steps: adsorption at 4 degrees C, precipitation of the complex at 10 degrees C, desorption by adding the desorption reagent at 4 degrees C, and recovery of a target protein at 10 degrees C. In the affinity precipitation of Con A from the crude extract of jack bean meal, 82% of Con A added was recovered with 80% purity by addition of 0.2 M methyl-alpha-D-mannopyranoside as a desorption reagent. In the repeated purification of Con A from the crude extract, pAPM could be satisfactorily reused without decrease in the affinity performance. Moreover, when pAPM was used for the purification of thermolabile alpha-glucosidase from the cell-free extract of Saccharomyces cerevisiae, 68% of total activity added was recovered and the specific activity per amount of protein of the purified solution was enhanced 206-fold higher than that of the cell-free extract without thermal deactivation of the enzyme.  相似文献   

7.
Casein glycomacropeptide (CMP) is a 64‐ amino acid peptide found in cheese whey, which is released after κ‐casein specific cleavage by chymosin. CMP lacks aromatic amino acids, a characteristic that makes it usable as a nutritional supplement for people with phenylketonuria. CMP consists of two nonglycosylated isoforms (aCMP A and aCMP B) and its different glycosylated forms (gCMP A and gCMP B). The most predominant carbohydrate of gCMP is N‐acetylneuraminic acid (sialic acid). Here, we developed a CMP purification process based on the affinity of sialic acid for wheat germ agglutinin (WGA). After formation of chitosan beads and adsorption of WGA, the agglutinin was covalently attached with glutaraldehyde. Two matrices with different WGA density were assayed for CMP adsorption. Maximum adsorption capacities were calculated according to the Langmuir model from adsorption isotherms developed at pH 7.0, being 137.0 mg/g for the matrix with the best performance. In CMP reduction from whey, maximum removal percentage was 79% (specifically 33.7% of gCMP A and B, 75.8% of aCMP A, and 93.9% of aCMP B). The CMP was recovered as an aggregate with an overall yield of 64%. Therefore, the matrices developed are promising for CMP purification from cheese whey. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:171–180, 2017  相似文献   

8.
The antifungal role of wheat germ agglutinin (WGA) isolated from a Romanian dihaploid variety of wheat against two pathogenic fungal species of Fusarium, F. graminearum and F. oxysporum, is demonstrated. WGA was prepared from unprocessed wheat germs by a new purification procedure using chitin and fetuin-Sepharose as affinity chromatography supports. SDS-PAGE and chitinase assay showed that the WGA preparation migrated as a single protein band and was devoid of any contaminating enzyme chitinase, well known for its antifungal effects. Based on its affinity for N-acetylglucosamine residues, WGA binding to the chitin-containing walls of the fungi was detected by fluorescence microscopy using WGA coupled with fluorescein isothiocyanate (FITC). In vitro testing of WGA action on early developmental stages of both fungal strains resulted in various modifications of the germ tubes, visualised by light microscopy: swelling, vacuolation of the cellular content and lysis of cell walls. Viability tests performed on potato tuber slices showed that the microbial infection was prevented from spreading by pretreatment of the fungal suspension with WGA.  相似文献   

9.
Polyamine precipitation conditions for removing host cell protein impurities from the cell culture fluid containing monoclonal antibody were studied. We examined the impact of polyamine concentration, size, structure, cell culture fluid pH and ionic strength. A 96-well microtiter plate based high throughput screening method was developed and used for evaluating different polyamines. Polyallylamine, polyvinylamine, branched polyethyleneimine and poly(dimethylamine-co-epichlorohydrin-ethylenediamine) were identified as efficient precipitants in removing host cell protein impurities. Leveraging from the screening results, we incorporated a polyamine precipitation step into a monoclonal antibody purification process to replace the Protein A chromatography step. The optimization of the overall purification process was performed by taking the mechanisms of both precipitation and chromatographic separation into account. The precipitation-containing process removed a similar amount of process-related impurities, including host cell proteins, DNA, insulin and gentamicin and maintained similar product quality in respect of size and charge variants to chromatography based purification. Overall recovery yield was comparable to the typical Protein A affinity chromatography based antibody purification process.  相似文献   

10.
An IgG1 monoclonal antibody (MAB) was isolated from hybridoma culture supernatant by affinity precipitation with an Eudragit S-100-based heterobifunctional ligand. Affinity binding was performed in a homogeneous aqueous phase at pH 7.5 followed by precipitation of the bound affinity complex by lowering the pH to 4.8. After two washing steps, elution of specifically bound MAB was achieved by incubating the precipitate with 0.1 M glycine.HCl pH 2.5. The influence of elution volume and time on the recovery of active MAB and the overall purification factor were studied. The best conditions enabled the recovery of 50.2% of active MAB with a purification factor of 6.2. A further dialysis against 50 mM Tris.HCl pH 8.0 increased the activity yield and the purification factor to 68.4% and 8.3, respectively. This result showed that part of the antibody activity loss during affinity precipitation was due to a reversible inactivation process, being easily recovered after a refining dialysis step.  相似文献   

11.
It was found that alginate binds to glucoamylase, presumably through the recognition of starch binding domain of the latter. The present work exploits this for purification of glucoamylases from commercial preparation of Aspergillus niger and crude culture filtrate of Bacillus amyloliquefaciens by affinity precipitation technique in a single-step protocol. Glucoamylase is selectively precipitated using alginate as macroaffinity ligand and later eluted with 1.0 M maltose. In the case of A. niger, 81% activity is recovered with 28-fold purification. The purified glucoamylase gave a single band on SDS-PAGE corresponding to 78 kDa molecular weight. The developed affinity precipitation process also works efficiently for purification of Bacillus amyloliquefaciens glucoamylase from its crude culture filtrate, giving 78% recovery with 38-fold purification. The purified preparation showed a major band corresponding to 62 kDa and a faint band about 50 kDa on SDS-PAGE. The latter corresponds to the molecular weight for alpha-amylase of Bacillus amyloliquefaciens.  相似文献   

12.
人血清白蛋白纯化技术研究进展   总被引:6,自引:0,他引:6  
本文综述了国内外关于血浆人血清白蛋白(pHSA)和基因重组人血清白蛋白(rHSA)分离纯化的进展和发展趋势。以冷乙醇沉淀为主的pHSA分离方法仍是目前多数工业采用的工艺,但近年来发展的离子交换色谱、凝胶过滤色谱、亲和色谱等多种色谱分离技术具有自动化程度高、生产周期短、更符合GMP等特点,正在逐步取代传统的冷乙醇沉淀法。当前用基因工程技术表达的人血清白蛋白对分离纯化提出了新的挑战。为获得高纯度、安全、稳定的产品,各种色谱分离技术得到更多的应用,其中扩张床离子交换色谱可以省去离心、过滤等传统固液分离操作。尽管rHSA的纯化技术已有一定的发展,但纯化过程仍需进一步优化以提高产品纯度及收率。  相似文献   

13.
This paper describes a procedure for the synthesis and application of a citalopram-derived affinity resin in purifying the 5HT-reuptake system from human blood platelets. A two-step scheme has been developed for partial purification, based on wheat germ agglutinin-lectin (WGA) affinity and citalopram affinity chromatographies. Upon solubilization of the carrier with 1% digitonin, a 50-70-fold increase in specific [3H]imipramine binding activity with a 70% recovery could be accomplished through WGA-lectin chromatography. The WGA pool was then subjected to affinity chromatography on citalopram-agarose. At least 90% of the binding capacity adsorbed to the column. Specific elution using 10 microM citalopram resulted in a 22% recovery of binding activity. A 10,000-fold overall purification was obtained by using this two-step procedure. Analysis of the fractions on SDS-PAGE after 125I labeling revealed specific elution of 78- and 55-kDa proteins concomitant with the appearance of [3H]imipramine binding activity. The pharmacological profile of the partially purified reuptake system correlated well with that derived from the crude membrane-bound reuptake system, suggesting a copurification of the 5HT binding activity and [3H]imipramine binding activity.  相似文献   

14.
15.
In this work we have evaluated the potential to use wheat germ agglutinin(WGA) for weak affinity chromatography (WAC) of N-acetyl derivatives ofmono-, di-, tri- and tetrasaccharides. WGA was used as a ligand in a highperformance liquid affinity chromatography (HPLAC) system. Isocraticaffinity chromatography was conducted where similar N-acetyl saccharideswere separated according to their binding strength to WGA. Affinities areweak and lie typically in the mM range. For example, for3sialyllactose, the dissociation constant (Kd) wasfound to be 2.4 mM at 8°C. It was interesting to note that theWGA–HPLC column can distinguish between the anomeric forms ofN-acetylglucosamine. Weak affinity chromatography with immobilised WGA wasused in an enzyme assay to detect the activity of GlcNAc-transferases.  相似文献   

16.
Affinity precipitation using Z‐elastin‐like polypeptide‐functionalized E2 protein nanocages has been shown to be a promising alternative to Protein A chromatography for monoclonal antibody (mAb) purification. We have previously described a high‐yielding, affinity precipitation process capable of rapidly capturing mAbs from cell culture through spontaneous, multivalent crosslinking into large aggregates. To challenge the capabilities of this technology, nanocage affinity precipitation was investigated using four industrial mAbs (mAbs A–D) and one Fc fusion protein (Fc A) with diverse molecular properties. A molar binding ratio of 3:1 Z:mAb was sufficient to precipitate >95% mAb in solution for all molecules evaluated at ambient temperature without added salt. The effect of solution pH on aggregation kinetics was studied using a simplified two‐step model to investigate the protein interactions that occur during mAb–nanocage crosslinking and to determine the optimal solution pH for precipitation. After centrifugation, the pelleted mAb–nanocage complex remained insoluble and was capable of being washed at pH ≥ 5 and eluted with at pH < 4 with >90% mAb recovery for all molecules. The four mAbs and one Fc fusion were purified from cell culture using optimal process conditions, and >94% yield and >97% monomer content were obtained. mAb A–D purification resulted in a 99.9% reduction in host cell protein and >99.99% reduction in DNA from the cell culture fluids. Nanocage affinity precipitation was equivalent to or exceeded expected Protein A chromatography performance. This study highlights the benefits of nanoparticle crosslinking for enhanced affinity capture and presents a robust platform that can be applied to any target mAb or Fc‐containing proteins with minimal optimization of process parameters.  相似文献   

17.
Given an existing demand to establish a process of tetanus vaccine production in a way that allows its complete validation and standardization, this paper focuses on tetanus toxoid purification step. More precisely, we were looking at a possibility to replace the widely used ammonium-sulphate precipitation by a chromatographic method. Based on the tetanus toxin's biochemical characteristics, we have decided to examine the possibility of tetanus toxoid purification by hydrophobic chromatography, and by chromatographic techniques based on interaction with immobilized metal ions, i.e. chelating chromatography and immobilized metal affinity chromatography. We used samples obtained from differently fragmented crude tetanus toxins by formaldehyde treatment (assigned as TTd-A and TTd-B) as starting material for tetanus toxoid purification. Obtained results imply that purification of tetanus toxoid by hydrophobic chromatography represents a good alternative to ammonium-sulphate precipitation. Tetanus toxoid preparations obtained by hydrophobic chromatography were similar to those obtained by ammonium-sulphate precipitation in respect to yield, purity and immunogenicity. In addition, their immunogenicity was similar to standard tetanus toxoid preparation (NIBSC, Potters Bar, UK). Furthermore, the characteristics of crude tetanus toxin preparations had the lowest impact on the final purification product when hydrophobic chromatography was the applied method of tetanus toxoid purification. On the other hand, purifications of tetanus toxoid by chelating chromatography or immobilized metal affinity chromatography generally resulted in a very low yield due to not satisfactory tetanus toxoid binding to the column, and immunogenicity of the obtained tetanus toxoid-containing preparations was poor.  相似文献   

18.
The extractive purification of peroxidase from Armoracia rusticana roots and Glycine max seed coats in temperature-induced and affinity microsphere-containing aqueous two-phase systems was stuied. The extractive purification of peroxidase from Glycine max seed coats was carried out in a temperature-induced aqueous two-phase system formed by Triton X-45, Triton X-100 and sodium acetate at pH 5.5 A 99% yield with a 6-fold purification factor was obtained. When the clear top phase was subjected to concanavalin-A affinity chromatography, the purification factor rose to 41 and the yield dropped to 28%. A two-step purification process for peroxidase from Armoracia rusticana roots was developed by adding concanavalin-A affinity microspheres to a PEG/phosphate aqueous two-phase system. The method allows a 60% recovery of high purity peroxidase (1,860 guaiacol units per mg). A lower recovery rate and degree of purification of this enzyme was achieved after temperature-induced aqueous two-phase partition or acetone precipitation and concanavalin-A affinity column chromatography.  相似文献   

19.
Metal chelate affinity precipitation of proteins, a method combining metal–protein interaction and affinity precipitation is being discussed as a selective separation process for proteins. The technique utilizes a flexible soluble–insoluble thermo-responsive polymer with a covalently linked ligand loaded with metal ions. The affinity binding of the target protein varies with different metal ions. Copolymers of N-isopropylacrylamide with 1-vinylimidazole loaded with Cu(II) ions are designed as a potential carriers for affinity purification and proved to be successful for purification of protein inhibitors from a variety of cereals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
《Trends in biotechnology》1987,5(10):281-286
Novel purification processes have been developed, based on the interaction between complementary biomolecules, to circumvent the difficulties encountered by conventional affinity chromatography. Depending upon the procedure used for isolating the ligand—binder complex, the process can be termed affinity cross-flow filtration, affinity partition or affinity precipitation. This review describes the developments and potentials of such purification techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号