首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The citrus tristeza virus resistance gene (Ctv) is a single dominant gene in Poncirus trifoliata, a sexually compatible relative of citrus. To clone this gene, a bacterial artificial chromosome (BAC) library has been constructed from an individual plant that was homozygous for Ctv. This library contains 45,696 clones with an average insert size of 80 kb, corresponding to 9.6 genome equivalents. Screening of the BAC library with five chloroplast DNA probes indicated that 0.58% of the BAC clones contained chloroplast-derived inserts. The chromosome walk across the Ctv locus was initiated using three closely linked genetic markers: C19, AD8, and Z16. The walk has been completed and a contig of ca. 1.2 Mb was constructed. Based on new data, the genetic map in the Ctv region was revised, with Ctv being located between AD8-Z16 and C19 at distances of 1.2 and 0.6 cM, respectively. Utilizing DNA fragments isolated from the contig as RFLP markers, the Ctv locus was further mapped to a region of ca. 300 kb. This contig contains several putative disease-resistance genes similar to the rice Xa21 gene, the tomato Cf-2 gene, and the Arabidopsis thaliana RPS2 gene. This library will therefore allow cloning of Ctv and other putative disease-resistance genes.  相似文献   

2.
Fine-mapping of an Arabidopsis cell death mutation locus   总被引:2,自引:0,他引:2  
An Arabidopsis cell death mutation locus was mapped to chromosome 2 between lGS1 and mi421. The YAC clone ends, CIC9A3R, CIC11C7L, CIC2G5R and RFLP marker CDs3 within this interval, were used to probe TAMU BAC library and 31 BAC clones were obtained. A BAC contig encompassing the mutation locus, which consists of T6P5, T7M23, T12A21, T8L6 and T18A18, was identified by Southern hybridization with the BAC ends as probes. 11 CAPS and 12 STS markers were developed in this region. These results will facilitate map-based cloning of the genes and sequencing of the genomic DNA in this region.  相似文献   

3.
An Arabidopsis cell death mutation locus was mapped to chromosome 2 between /GS1 and mi421. The YAC clone ends, CIC9A3R, CIC11C7L, CIC2G5R and RFLP marker CDs3 within this interval, were used to probe TAMU BAC library and 31 BAC clones were obtained. A BAC contig encompassing the mutation locus, which consists of T6P5, T7M23, T12A21, T8L6 and T18A18, was identified by Southern hybridization with the BAC ends as probes. 11 CAPS and 12 STS markers were developed in this region. These results will facilitate map-based cloning of the genes and sequencing of the genomic DNA in this region.  相似文献   

4.
The oomycete plant pathogen Phytophthora infestans is the causal agent of late blight, one of the most devastating diseases of potato worldwide. As part of efforts to clone avirulence (Avr) genes and pathogenicity factors from P. infestans, we have constructed a bacterial artificial chromosome (BAC) library from an isolate containing six Avr genes. The BAC library comprises clones with an average insert size of 98 kb and represents an estimated 10 genome equivalents. A three-dimensional pooling strategy was developed to screen the BAC library for amplified fragment length polymorphism (AFLP) markers, as this type of marker has been extensively used in construction of a P. infestans genetic map. Multiple positive clones were identified for each AFLP marker tested. The pools were used to construct a contig of 11 BAC clones in a region of the P. infestans genome containing a cluster of three avirulence genes. The BAC contig is predicted to encompass the Avr11 locus but mapping of the BAC ends will be required to determine if the Avr3 and Avr10 loci are also present in the BAC contig. These results are an important step towards the positional cloning of avirulence genes from P. infestans, and the BAC library represents a valuable resource for largescale studies of oomycete genome organisation and gene content.  相似文献   

5.
In Peronospora parasitica (At) (downy mildew), the genetic determinants of cultivar-specific recognition by Arabidopsis thaliana are the Arabidopsis thaliana-recognised (ATR) avirulence genes. We describe the identification of 10 amplified fragment length polymorphism (AFLP) markers that define a genetic mapping interval for the ATR1Nd avirulence allele, the presence of which is perceived by the RPP1Nd resistance gene. Furthermore, we have constructed a P. parasitica (At) bacterial artificial chromosome (BAC) library comprising over 630Mb of cloned DNA. We have isolated 16 overlapping clones from the BAC library that form a contig spanning the genetic interval. BAC sequence-derived markers and a total mapping population of 311 F(2) individuals were used to refine the ATR1Nd locus to a 1cM interval that is represented by four BAC clones and spans less than 250kb of DNA. This work demonstrates that map-based cloning techniques are feasible in this organism and provides the critical foundations for cloning ATR1Nd using such a strategy.  相似文献   

6.
Photoperiod-sensitive genic male-sterile rice has a number of desirable characteristics for hybrid rice production. Previous studies identified pms1, located on chromosome 7, as a major locus for photoperiod-sensitive genic male sterility. The objective of this study was to localize the pms1 locus to a specific DNA fragment by genetic and physical mapping. Using 240 highly sterile individuals and a random sample of 599 individuals from an F2 population of over 5000 individuals from a cross between Minghui 63 and 32001S, we localized the pms1 locus by molecular marker analysis to a genetic interval of about 4 cM, 0.25 cM from RG477 on one side and 3.8 cM from R1807 on the other side. A contig map composed of seven BAC clones spanning approximate 500 kb in length was constructed for the pms1 region by screening a BAC library of Minghui 63 DNA using RFLP markers and chromosomal walking. Analysis of recombination events in the pms1 region among the highly sterile individuals reduced the length of the contig map to three BAC clones. Sequencing of one BAC clone, 2109, identified two SSR markers located 85 kb apart in the clone that flanked the pms1 locus on both sides, as indicated by the distribution of recombination events. We thus concluded that the pms1 locus was located on the fragment bounded by the two SSR markers.  相似文献   

7.
Fine physical mapping of the rice stripe resistance gene locus, Stvb-i   总被引:8,自引:0,他引:8  
The Stvb-i gene confers stripe disease resistance to rice. For positional cloning, we constructed a physical map spanning 1.8-cM distance between flanking markers, consisting of 18 bacterial artificial chromosome (BAC) clones, around the Stvb-i locus on rice chromosome 11. The 18 clones were isolated by screening a BAC library derived from a japonica cultivar, Shimokita, with three Stvb-i-linked RFLP markers and DraI-digested DNAs of a yeast artificial chromosome (YAC) clone. The results of Southern hybridization and restriction enzyme analyses indicated that these BAC clones are contiguous and cover about a 700-kb region containing the Stvb-i allele. Utilizing end and internal fragments of the BAC insert DNAs, 33 molecular markers were generated within a small chromosomal region including the Stvb-i locus. Genotyping analysis with these markers for a resistant cultivar and four nearby recombinants selected from 120 F2 individuals indicated that Stvb-i is contained within an approximately 286-kb region covered with two overlapping BAC clones. Received: 25 August 1999 / Accepted: 16 November 1999  相似文献   

8.
In pepper, the TMV resistance locus L is syntenic to the tomato I2 and the potato R3 loci on chromosome 11. In this report, we identified pepper bacterial artificial chromosome (BAC) clones corresponding to the I2 and R3 loci and developed L-linked markers using the BAC sequence information. A BAC library was screened using the tomato I2C-1 gene as a probe. The resulting clones were sorted further by PCR screening, sequencing, and genetic mapping. A linkage analysis revealed that BAC clone 082F03 could be anchored to the target region near TG36 on chromosome 11. Using the 082F03 sequence, more BAC clones were identified and a BAC contig spanning 224 kb was constructed. Gene prediction analysis showed that there were at least three I2/R3 R gene analogs (RGAs) in the BAC contig. Three DNA markers closely linked (about 1.2 cM) to the L 4 gene were developed by using the BAC contig sequence. The single nucleotide polymorphism marker 087H3T7 developed in this study was subjected to linkage analysis in L 4 - and L 3 -segregating populations together with previously developed markers. The 189D23M marker, which is known to co-segregate with L 3 , was located on the opposite side of 087H3T7, about 0.7 cM away from L 4 . This supports the idea that L 3 and L 4 may be different genes closely linked within the region instead of different alleles at the same locus. Finally, use of flanking markers in molecular breeding program for introgression of L 4 to elite germplasm against most aggressive tobamoviruses pathotype P1,2,3 is discussed.  相似文献   

9.
The recessive genic male sterility (RGMS) line 9012AB has been used as an important pollination control system for rapeseed hybrid production in China. Here, we report our study on physical mapping of one male-sterile locus (BnRf) in 9012AB by exploiting the comparative genomics among Brassica species. The genetic maps around BnRf from previous reports were integrated and enriched with markers from the Brassica A7 chromosome. Subsequent collinearity analysis of these markers contributed to the identification of a novel ancestral karyotype block F that possibly encompasses BnRf. Fourteen insertion/deletion markers were further developed from this conserved block and genotyped in three large backcross populations, leading to the construction of high-resolution local genetic maps where the BnRf locus was restricted to a less than 0.1-cM region. Moreover, it was observed that the target region in Brassica napus shares a high collinearity relationship with a region from the Brassica rapa A7 chromosome. A BnRf-cosegregated marker (AT3G23870) was then used to screen a B. napus bacterial artificial chromosome (BAC) library. From the resulting 16 positive BAC clones, one (JBnB089D05) was identified to most possibly contain the BnRf (c) allele. With the assistance of the genome sequence from the Brassica rapa homolog, the 13.8-kb DNA fragment covering both closest flanking markers from the BAC clone was isolated. Gene annotation based on the comparison of microcollinear regions among Brassica napus, B. rapa and Arabidopsis showed that five potential open reading frames reside in this fragment. These results provide a foundation for the characterization of the BnRf locus and allow a better understanding of the chromosome evolution around BnRf.  相似文献   

10.
Mutation in the cauliflower gene Or causes high levels of -carotene to accumulate in various tissues of the plant that are normally devoid of carotenoids. To decipher the molecular basis by which Or regulates carotenoid accumulation, we have undertaken the isolation of Or by a map-based cloning strategy. Two previously isolated, locus-specific, sequence-characterized amplified region (SCAR) markers that flank Or were employed for the analysis of a large segregating population consisting of 1632 F2 individuals, and a high-resolution genetic linkage map of the Or locus region was developed. To facilitate positional cloning, we constructed a cauliflower genomic library in a bacterial artificial chromosome (BAC) vector, using high molecular weight DNA from Or homozygotes. The BAC library comprises 60,288 clones with an average insert size of 110 kb, and represents an estimated 10-fold coverage of the genome. A BAC contig encompassing the Or locus was established by screening the library with a marker that is closely linked to Or and by identifying overlapping BAC clones by chromosome walking. Physical mapping delimited the Or locus to a 50-kb DNA fragment within a single BAC clone, which corresponds to a genetic interval of 0.3 cM.Communicated by R. Hagemann  相似文献   

11.
A marker-saturated linkage map of potato was used to genetically map a locus involved in the resistance against wart disease Synchytrium endobioticum race 1. The locus mapped on the long arm of chromosome 4 and is named Sen1-4 in contrast to a Sen1 locus on chromosome 11. The AFLP markers from the Sen1-4 interval enabled the isolation of BAC clones from an 11 genome equivalent BAC library. This was achieved via fingerprinting of BAC pools with the AFLP primer pairs that resemble the genetic marker loci. With non-selective AFLP primers, fingerprints of individual BAC clones were generated to analyse the overlap between BAC clones using FPC. This resulted in a complete contig and a minimal tiling path of 14 BAC clones enclosing the Sen1-4 locus. The BAC contig has a genetic length of ~6 cM and a physical length of ~1 Mb. Our results demonstrate that map-based cloning of Sen1-4 can be pursued on the basis of a strategy of marker saturation alone. Genetic resolution achieved by screening large numbers of offspring for recombination events may not be required. Together with the construction of the BAC contig, a physical map with the position of the markers is accomplished in one step. This provides proof of concept for the utility of the marker saturation that is offered by the ultra dense AFLP map of potato for gene cloning.  相似文献   

12.
 The recessive gene, xa13, confers resistance to Philippine race 6 (PXO99) of the bacterial blight pathogen Xanthomonas oryzae pv oryzae. Fine genetic mapping and physical mapping were conducted as initial steps in an effort to isolate the gene. Using nine selected DNA markers and two F2 populations of 132 and 230 plants, xa13 was fine-mapped to a genomic region <4 cM on the long arm of rice chromosome 8, flanked by two RFLP markers, RG136 and R2027. Four DNA markers, RG136, R2027, S14003, and G1149, in the target region were used to identify bacterial artificial chromosome (BAC) clones potentially harboring the xa13 locus from a rice BAC library. A total of 11 BACs were identified, forming four separate contigs including a single-clone contig, 29I3, associated with the RG136 STS marker, the S14003 contig consisting of four clones (44F8, 41O2, 12A16, and 12F20), the G1149 contig with two clones, 23D11 and 21H18, and the R2027 contig consisting of four overlapping clones, 42C23, 30B5, 6B7 and 21H14. Genetic mapping indicated that the xa13 locus was contained in the R2027 contig. Chromosomal walking on the R2027 contig resulted in two more clones, 33C7 and 14L3. DNA fingerprinting showed that the six clones of the R2027 contig were overlapping. Clone 44F8 hybridized with a single fragment from the clone 14L3, integrating the R2027 and S14003 contigs into a single contig consisting of ten BAC clones with a total size of approximately 330 kb. The physical presence of the xa13 locus in the contig was determined by mapping the ends of the BAC inserts generated by TAIL-PCR. In an F2 population of 230 plants, the BAC-end markers 42C23R and 6B7F flanked the xa13 locus. The probes 21H14F and 21H14R derived from BAC clone 21H14 were found to flank xa13 at a distance of 0.5 cM on either side, using a second F2 population of 132 plants. Thus, genetic mapping indicated that the contig and the 96-kb clone, 21H14, contained the xa13 locus. Received: 15 August 1998 / Accepted: 29 September 1998  相似文献   

13.
Fluorescence in situ hybridization (FISH), using bacterial artificial chromosome (BAC) clone as probe, is a reliable cytological technique for chromosome identification. It has been used in many plants, especially in those containing numerous small chromosomes. We previously developed eight chromosome-specific BAC clones from tetraploid cotton, which were used as excellent cytological markers for chromosomes identification. Here, we isolated the other chromosome-specific BAC clones to make a complete set for the identification of all 26 chromosome-pairs by this technology in tetraploid cotton (Gossypium hirsutum L.). This set of BAC markers was demonstrated to be useful to assign each chromosome to a genetic linkage group unambiguously. In addition, these BAC clones also served as convenient and reliable landmarks for establishing physical linkage with unknown targeted sequences. Moreover, one BAC containing an EST, with high sequence similarity to a G. hirsutum ethylene-responsive element-binding factor was located physically on the long arm of chromosome A7 with the help of a chromosome-A7-specific BAC FISH marker. Comparative analysis of physical marker positions in the chromosomes by BAC-FISH and genetic linkage maps demonstrated that most of the 26 BAC clones were localized close to or at the ends of their respective chromosomes, and indicated that the recombination active regions of cotton chromosomes are primarily located in the distal regions. This technology also enables us to make associations between chromosomes and their genetic linkage groups and re-assign each chromosome according to the corresponding genetic linkage group. This BAC clones and BAC-FISH technology will be useful for us to evaluate grossly the degree to which a linkage map provides adequate coverage for developing a saturated genetic map, and provides a powerful resource for cotton genomic researches.  相似文献   

14.
Construction of a BAC contig containing the xa5 locus in rice   总被引:9,自引:0,他引:9  
 The recessive gene xa5 confers resistance to bacterial blight in rice. To generate a physical map of the xa5 locus, three RFLP markers RG556, RG207 and RZ390, closely linked to xa5, were used to screen a rice bacterial artificial chromosome (BAC) library. The identified overlapping BAC clones formed two small contigs which were extended to both sides by chromosome walking. The final physical map consisted of 14 BAC clones and covered 550 kb. Genetic analysis with an F2 population showed that two RFLP markers 28N22R and 40F20R, derived from the BAC clones in the contig, flanked the xa5 locus. To further delimit the location of the xa5 locus, RFLP markers RG556 and RG207 were converted to sequence tagged sites and used to perform genetic analysis. The results indicated that the xa5 locus was most likely located between RG207 and RG556. Among the BAC clones in the contig, one clone, 44B4, hybridized to both RG207 and RG556. This suggests that BAC clone 44B4 carried the xa5 locus. Received: 12 January 1998 / Accepted: 27 May 1998  相似文献   

15.
水稻抗稻瘟病基因Pi-2(t)物理图谱的构建   总被引:7,自引:0,他引:7  
应用BAC文库,采用基于分子标记的染色体着陆(marker-based chromosome landing)和染色体步查(chromosome walking)等手段,建立了包含有裟抗稻瘟病基因Pi-2(t)的物理图谱,该物理图谱由22个BAC克隆组成,遗传跨度8cM,而物理距离为925kb,该物理图谱的构建不仅为进一步分离和克隆该基因打下了基础,同时也可为分子标记辅助选择育种选择抗稻瘟病新材料  相似文献   

16.
The interaction between soybean and the phytopathogenic oomycete Phytophthora sojae is controlled by host resistance (Rps) genes and pathogen avirulence (Avr) genes. We have mapped the Avr1a locus in F(2) populations derived from four different P. sojae races. Four RAPD and nine AFLP markers linked to Avr1a were initially identified. Nine markers were used to compare genetic linkage maps of the Avr1a locus in two distinct F(2) populations. Distorted segregation ratios favoring homozygous genotypes were noted in both crosses. Segregation analysis of all the markers in one F(2) population of 90 progeny generated a map of 113.2 cM encompassing Avr1a, with one marker cosegregating with the gene. The cosegregating DNA marker was used to isolate P. sojae BAC clones and construct a physical map covering 170 kb, from which additional DNA markers were developed. Three markers occurring within the BAC contig were mapped in an enlarged population of 486 F(2) progeny. Avr1a was localized to a 114-kb interval, and an average physical to genetic distance ratio of 391 kb/cM was calculated for this region. This work provides a basis for the positional cloning of Avr1a.  相似文献   

17.
A fine physical map of the top arm of Arabidopsis thaliana chromosome 3 has been constructed by ordering P1, TAC and BAC clones using the sequences of a variety of DNA markers and end-sequences of clones. The marker sequences used in this study were derived from 58 DNA markers, 93 YAC end-sequences, and 807 end-sequences of P1, TAC and BAC clones. The entire top arm of chromosome 3, except for the centromeric and telomeric regions, was covered by a single contig 13.3 Mb long. This fine physical map will facilitate gene isolation by map-based cloning experiments as well as genome sequencing of the top arm of chromosome 3. The map and end-sequence information are available on the web site KAOS (Kazusa Arabidopsis data Opening Site) at [http://www.kazusa.or.jp/arabi/].  相似文献   

18.
Developmental mutants serve as a useful material to unravel the mechanisms necessary for organ development. The polycotyledon (poc) mutant of tomato, with multiple cotyledons in the seedling and varied phenotypic effects in the adult plant is one such mutant. Studies using physiological and anatomical methods in our lab suggest that POC is involved in the negative regulation of polar auxin transport, which is likely the reason for the pleiotropic phenotype in the mutant. Because of the physiological significance of the polycotyledon mutant described in this paper and also being first of its kind in tomato and also other plant species, we are using a map-based cloning approach to map the polycotyledon gene. Molecular mapping of this locus using segregating interspecific F2 mapping population localized polycotyledon gene close to TG424 marker on the long arm of chromosome 9. The closest marker mapped was a PCR marker identified in this study, E8A2 at a distance of 7.4 cM from the poc locus. The absence of tightly linked RAPD markers and the non-availability of more mapped markers in this region led us to initiate chromosome walk to polycotyledon gene. Both the flanking markers TG248 and E8A2 were used to screen the BAC library and a contig was developed for TG248 marker. The BAC-end sequences were analyzed for their use as RFLP markers to enrich this region for markers. Analysis of the BAC-end sequences revealed that poc is localized in the region surrounded by copia-like retrotransposon elements explaining the absence of markers in the euchromatin region on long arm of chromosome 9. Further studies identified two BAC-end sequences which mapped around the poc locus and also indicated very low physical versus genetic distance ratio in this region. The double mutant analyses of poc with the other two known polycotyledon mutants of tomato, pct and dem revealed allelism with pct; therefore, the poc mutant was named as pct1-2, and also the original pct mutant was renamed as pct1-1.  相似文献   

19.
A bacterial artificial chromosome (BAC) library containing a large genomlc DNA insert is an important tool for genome physical mapping, map-based cloning, and genome sequencing. To Isolate genes via a map-based cloning strategy and to perform physical mapping of the cotton genome, a high-quality BAC library containing large cotton DNA Inserts Is needed. We have developed a BAC library of the restoring line 0-613-2R for Isolating the fertility restorer (Rf1) gene and genomic research in cotton (Gossypium hirsutum L.). The BAC library contains 97 825 clones stored In 255 pieces of a 384-well mlcrotiter plate. Random samples of BACs digested with the Notl enzyme Indicated that the average Insert size Is approximately 130 kb, with a range of 80-275 kb, and 95.7% of the BAC clones in the library have an average insert size larger than 100 kb. Based on a cotton genome size of 2 250 Mb, library coverage is 5.7 × haploid genome equivalents. Four clones were selected randomly from the library to determine the stability of the BAC clones. There were no different fingerprints for 0 and 100 generations of each clone digested with Notl and Hlndiii enzymes. Thus, the atabiiity of a single BAC clone can be sustained at iesat for 100 generations. Eight simple sequence repeat (SSR) markers flanking the Rf; gene were chosen to screen the BAC library by pool using PCR method and 25 positive clones were identified with 3.1 positive clones per SSR marker.  相似文献   

20.
The tomato (Lycopersicon esculentum) Bs4 gene confers resistance to strains of Xanthomonas campestris pathovar vesicatoria that express the avirulence protein AvrBs4. As part of a map-based cloning strategy for the isolation of Bs4, we converted Bs4-linked amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers into locus-specific sequence-tagged-site (STS) markers. The use of these markers for the analysis of 1972 meiotic events allowed high-resolution genetic mapping within a 1.2-cM interval containing the target gene. Two tomato yeast artificial chromosome (YAC) clones, each harboring inserts of approximately 250 kb, were identified using the marker most closely linked to Bs4. YAC end-specific markers were established and employed to construct a local YAC contig. The ratio of physical to genetic distance at Bs4 was calculated to be 280 kb/cM, revealing that recombination rates in this region are about three times higher than the genome-wide average. Mapping of YAC end-derived markers demonstrated that the Bs4 locus maps within a region of 250 kb, corresponding to a genetic interval of 0.9 cM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号