首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Lsh is involved in de novo methylation of DNA   总被引:5,自引:0,他引:5  
Deletion of Lsh perturbs DNA methylation patterns in mice yet it is unknown whether Lsh plays a direct role in the methylation process. Two types of methylation pathways have been distinguished: maintenance methylation by Dnmt1 occurring at the replication fork, and de novo methylation established by the methyltransferases Dnmt3a and Dnmt3b. Using an episomal vector in Lsh-/- embryonic fibroblasts, we demonstrate that the acquisition of DNA methylation depends on the presence of Lsh. In contrast, maintenance of previously methylated episomes does not require Lsh, implying a functional role for Lsh in the establishment of novel methylation patterns. Lsh affects Dnmt3a as well as Dnmt3b directed methylation suggesting that Lsh can cooperate with both enzymatic activities. Furthermore, we demonstrate that embryonic stem cells with reduced Lsh protein levels show a decreased ability to silence retroviral vector or to methylate endogenous genes. Finally, we demonstrate that Lsh associates with Dnmt3a or Dnmt3b but not with Dnmt1 in embryonic cells. These results suggest that the epigenetic regulator, Lsh, is directly involved in the control of de novo methylation of DNA.  相似文献   

6.
Lsh controls silencing of the imprinted Cdkn1c gene   总被引:2,自引:0,他引:2  
Epigenetic regulation, such as DNA methylation plays an important role in the control of imprinting. Lsh, a member of the SNF2 family of chromatin remodeling proteins, controls DNA methylation in mice. To investigate whether Lsh affects imprinting, we examined CpG methylation and allelic expression of individual genes in Lsh-deficient embryos. We report here that loss of Lsh specifically alters expression of the Cdkn1c gene (also known as p57(Kip2)) but does not interfere with maintenance of imprints at the H19, Igf2, Igf2r, Zac1 and Meg9 genes. The reactivation of the silenced paternal Cdkn1c allele correlates closely with a loss of CpG methylation at the 5' DMR at the Cdkn1c promoter, whereas KvDMR1 and DMRs of other imprinted genes were not significantly changed. Chromatin immunoprecipitations demonstrate a direct association of Lsh with the 5' DMR at the Cdkn1c promoter, but not with Kv DMR1 or other imprinted loci. These data suggest that methylation of the 5' DMR plays an important role in the imprinting of the Cdkn1c gene. Furthermore, it suggests that Lsh is not required for maintenance of imprinting marks in general, but is only crucial for imprinting at distinct genomic sites.  相似文献   

7.
Lymphoid specific helicase (Lsh) belongs to the family of SNF2/helicases. Disruption of Lsh leads to developmental growth retardation and premature aging in mice. However, the specific effect of Lsh on human cellular senescence remains unknown. Herein, we report that Lsh overexpression delays cell senescence by silencing p16INK4a in human fibroblasts. The patterns of p16INK4a and Lsh expression during cell senescence present the inverse correlation. We also find that Lsh requires histone deacetylase (HDAC) activity to repress p16INK4a and treatment with trichostatin A (TSA) is sufficient to block the repressor effect of Lsh. Moreover, overexpression of Lsh is correlated with deacetylation of histone H3 at the p16 promoter, and TSA treatment in Lsh-expressing cells reverses the acetylation status of histones. Additionally, we demonstrate an interaction between Lsh, histone deacetylase 1 (HDAC1) and HDAC2 in vivo. Furthermore, we demonstrate that Lsh interacts in vivo with the p16 promoter and recruits HDAC1. Our data suggest that Lsh represses endogenous p16INK4a expression by recruiting HDAC to establish a repressive chromatin structure at the p16INK4a promoter, which in turn delays cell senescence.  相似文献   

8.
9.
Lsh, an epigenetic guardian of repetitive elements   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

10.
In Xenopus, the Mix/Bix family of homeobox genes has been implicated in mesendoderm development. Mixl1 is the only known murine member of this family. To examine the role of Mixl1 in murine embryogenesis, we used gene targeting to create mice bearing a null mutation of Mixl1. Homozygous Mixl1 mutant embryos can be distinguished from their littermates by a marked thickening of the primitive streak. By the early somite stage, embryonic development is arrested, with the formation of abnormal head folds, foreshortened body axis, absence of heart tube and gut, deficient paraxial mesoderm, and an enlarged midline tissue mass that replaces the notochord. Development of extra-embryonic structures is generally normal except that the allantois is often disproportionately large for the size of the mutant embryo. In chimeras, Mixl1(-/-) mutant cells can contribute to all embryonic structures, with the exception of the hindgut, suggesting that Mixl1 activity is most crucial for endodermal differentiation. Mixl1 is therefore required for the morphogenesis of axial mesoderm, the heart and the gut during embryogenesis.  相似文献   

11.
Nectin-2 is a cell adhesion molecule encoded by a member of the poliovirus receptor gene family. This family consists of human, monkey, rat, and murine genes that are members of the immunoglobulin gene superfamily. Nectin-2 is a component of cell-cell adherens junctions and interacts with l-afadin, an F-actin-binding protein. Disruption of both alleles of the murine nectin-2 gene resulted in morphologically aberrant spermatozoa with defects in nuclear and cytoskeletal morphology and mitochondrial localization. Homozygous null males are sterile, while homozygous null females, as well as heterozygous males and females, are fertile. The production by nectin-2(-/-) mice of normal numbers of spermatozoa containing wild-type levels of DNA suggests that Nectin-2 functions at a late stage of germ cell development. Consistent with such a role, Nectin-2 is expressed in the testes only during the later stages of spermatogenesis. The structural defects observed in spermatozoa of nectin-2(-/-) mice suggest a role for this protein in organization and reorganization of the cytoskeleton during spermiogenesis.  相似文献   

12.
13.
Dickkopf-1 (dkk-1) is member of a novel family of secreted proteins and functions in head induction during Xenopus embryogenesis, acting as a potent inhibitor of Wnt signalling. Here we report: (1) the isolation of two additional murine members of the dkk family, dkk-2 and dkk-3; and (2) analysis of adult and embryonic gene expression of mouse dkk-1,-2, and -3, Xenopus dkk-1 as well as chicken dkk-3. Comparative developmental analyses of the dkk-1, dkk-2 and dkk-3 in mice indicate that these genes are both temporally and spatially regulated. They define overlapping deep domains in mesenchymal lineages suggesting a co-ordinated mode of action. All dkks show distinct and elevated expression patterns in tissues that mediate epithelial- mesenchyme transformations suggesting that they may participate in heart, tooth, hair and whisker follicle, limb and bone induction. In the limb buds expression of these genes are found in regions of programmed cell death. In a given organ, dkk-1 tends to be the earliest member expressed. Comparison with Xenopus dkk-1 and chicken dkk-3 shows evolutionarily conserved expression patterns. Our observations indicate that dkk genes constitute a new family of secreted proteins that may mediate inductive interactions between epithelial and mesenchymal cells.  相似文献   

14.
SNF2家族新成员Ercc61的cDNA克隆与表达分析   总被引:3,自引:0,他引:3  
SNF2家族蛋白在基因组复制、修复与表达中具有重要作用.报道了SNF2家族新成员Ercc61(excision repair crosscomplementing rodent repair deficiency,complementation group 6-like)的cDNA克隆、特性与表达分析.通过表达序列标签(EST)搜索和组装,获得了cDNA全长4002 bp的新基因Ercc6l(GenBank Acc.No AY172688),然后通过RT-PCR在小鼠胚胎心脏成功克隆了该基因.Ercc6l在小鼠基因组中由两个外显子和一个内含子组成,定位于X染色体,最大开放阅读框(ORF)编码一个含l 240个氨基酸的假定蛋白质.该假定蛋白质含有SNF2蛋白的8个保守基序(SNF2结构域).通过与SNF2家族各亚家族的成员进行多重比对,初步确认Ercc6l属于ERCC6亚家族成员.将Ercc6l编码区克隆到pEGFP-C3然后转染HeLa,3T3和B16细胞,融合蛋白主要定位于胞浆.BLAST搜索检索出69条小鼠EST与Erccol同源,这些EST主要来自胚胎和肿瘤组织.对小鼠不同发育时期的多种组织进行RT-PCR,发现Ercc6l在胚胎期强表达,出生产后表达显著下调.这些结果提示Ercc6l在胚胎发育和肿瘤发生中可能具有重要作用.  相似文献   

15.
Apoptosis plays an important regulatory role in mammalian embryogenesis and development. EAT/mcl-1 (EAT), an anti-apoptotic bcl-2-related gene, was isolated during the early differentiation of a human embryonal carcinoma cell line, an event which serves as a model of early embryogenesis. EAT is involved in apoptotic regulation and is believed to also function as an immediate-early gene. Thus it was hypothesized that EAT would be expressed during early embryogenesis and would be involved in the regulation of apoptosis during this critical period. To clarify this early expression, two antibodies to EAT were generated by use of immunizing oligopeptide (aa 37-55) and recombinant protein (aa 31-229) for use in immunohistochemistry and immunoblotting, respectively. With these antibodies, we then determined EAT expression during murine embryogenesis and in human development, using human fetal tissue of 6 to 23 gestational weeks. During murine embryogenesis, the EAT protein was found to be rapidly induced after fertilization, to peak at the 2-cell stage, to remain constant until the 8-cell stage, and then to decrease to below unfertilized egg levels in blastocysts. EAT expression patterns in early human development were found to essentially overlap those observed in adult tissues which suggest that EAT expression continues until adulthood in terminally differentiated tissues. Among tissues distinct to fetal development, EAT was detected in the mesonephric (Wolffian) duct and paramesonephric (Müllerian) duct. It is also noteworthy that prominent EAT immunoreactivity was also observed in large primary oocytes in 21-week fetal ovary, but was not detected in primordial germ cells in 23-week fetal testis. In summary, EAT expression was detected in hematopoietic, epithelial, neural, endocrine, and urogenital cells; this provides evidence that EAT, as an anti-apoptotic molecule, possibly functions to regulate apoptosis during development in these systems.  相似文献   

16.
We previously identified a novel protein kinase, Hunk, by means of a degenerate PCR screen designed to isolate kinases expressed in the murine mammary gland. We now describe the molecular cloning, chromosomal localization, and activity of this kinase and characterize its spatial and temporal pattern of expression in the mouse. We have isolated a 5.0-kb full-length cDNA clone that contains the 714-amino-acid open reading frame encoding Hunk. Analysis of this cDNA reveals that Hunk is most closely related to the SNF1 family of serine/threonine kinases and contains a newly described SNF1 homology domain. Accordingly, antisera specific for Hunk detect an 80-kDa polypeptide with associated phosphotransferase activity. Hunk is located on distal mouse chromosome 16 in a region of conserved synteny with human chromosome 21q22. During fetal development and in the adult mouse, Hunk mRNA expression is developmentally regulated and tissue-specific. Moreover, in situ hybridization analysis reveals that Hunk expression is restricted to subsets of cells within a variety of organs in the adult mouse. These findings suggest a role for Hunk in murine development.  相似文献   

17.
18.
SNF2家族新成员Ercc6l的cDNA克隆与表达分析(英)   总被引:1,自引:0,他引:1  
SNF2家族蛋白在基因组复制、修复与表达中具有重要作用. 报道了SNF2家族新成员Ercc6l (excision repair cross-complementing rodent repair deficiency, complementation group 6-like)的cDNA克隆、特性与表达分析.通过表达序列标签(EST)搜索和组装,获得了cDNA全长4 002 bp的新基因Ercc6l(GenBank Acc.No AY172688),然后通过RT-PCR在小鼠胚胎心脏成功克隆了该基因.Ercc6l在小鼠基因组中由两个外显子和一个内含子组成,定位于X染色体,最大开放阅读框(ORF)编码一个含1 240个氨基酸的假定蛋白质.该假定蛋白质含有SNF2蛋白的8个保守基序(SNF2结构域).通过与SNF2家族各亚家族的成员进行多重比对,初步确认Ercc6l属于ERCC6亚家族成员.将Ercc6l编码区克隆到pEGFP-C3然后转染HeLa,3T3 和B16细胞,融合蛋白主要定位于胞浆.BLAST搜索检索出69条小鼠EST与Ercc6l同源,这些EST主要来自胚胎和肿瘤组织.对小鼠不同发育时期的多种组织进行RT-PCR,发现Ercc6l在胚胎期强表达,出生产后表达显著下调.这些结果提示Ercc6l在胚胎发育和肿瘤发生中可能具有重要作用.  相似文献   

19.
Helicase homologues maintain cytosine methylation in plants and mammals   总被引:8,自引:0,他引:8  
The Arabidopsis DDM1 gene is required for the maintenance of genomic methylation patterns but is a helicase homolog of the SWI2/SNF2 family rather than a DNA methyltransferase. Dennis et al. have shown that disruption of the mouse Lsh gene, the mammalian gene most closely related to DDM1, causes demethylation of the mouse genome. This result suggests that the mechanisms that maintain methylation patterns in the genomes of mammals and flowering plants are more conserved than previously suspected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号