首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The effects of a selective inducible nitric oxide synthase inhibitor aminoguanidine (AG) on neuronal cells survival in hippocampal CA1 region after middle cerebral artery occlusion (MCAO) were examined. Transient focal cerebral ischemia was induced in rats by 60 or 90 min of MCAO, followed by 7 days of reperfusion. AG treatment (150 mg/kg i.p.) significantly reduced total infarct volumes: by 70% after 90 min MCAO and by 95% after 60 min MCAO, compared with saline-treated ischemic group. The number of degenerating neurons in hippocampal CA1 region was also markedly lower in aminoguanidine-treated ischemic groups compared to ischemic groups without AG-treatment. The number of iNOS-positive cells significantly increased in the hippocampal CA1 region of ischemic animals, whereas it was reduced in AG-treated rats. Our findings demonstrate that aminoguanidine decreases ischemic brain damage and improves neurological recovery after transient focal ischemia induced by MCAO.  相似文献   

2.
S.J. Park  K.W. Nam  H.J. Lee  E.Y. Cho  U. Koo  W. Mar   《Phytomedicine》2009,16(11):1042-1051
Large amounts of brain nitric oxide are produced over several hours after a stroke. This probably causes DNA strand nicks, nitration of cytosolic components of neurons, and ultimately neuronal death. Oxymatrine and matrine are two major alkaloids of the Chinese herb Sophora flavescens Ait. (Leguminosae); they have been demonstrated to inhibit liver injury during warm ischemia and reperfusion and to induce apoptosis, respectively, in vivo and in vitro. However, the neuroprotective efficacy of the EtOAc extract of S. flavescens (ESF) without the alkaloids has not been explored. This study investigated the inhibitory efficacy of ESF, which contain two major flavonoids kurarinone (45.5%) and sophoraflavone G (14.7%), in focal cerebral ischemia. Focal cerebral ischemia was induced using the middle cerebral artery occlusion (MCAO) method. After 1.5 h of MCAO and 24 h of reperfusion, the extent of neurological deficits and the infarct volume were measured in Sprague-Dawley rats. Compared with carnosine (50 mg/kg), as positive control ESF (20 mg/kg) significantly reduced infarct volume and neurological deficits. Treatment of human SH-SY5Y cells with sodium nitroprusside (SNP), a nitric oxide donor, decreased cell viability by causing apoptosis-like cell death. ESF significantly inhibited caspase-3-like enzyme activity and DNA fragmentation. The level of active caspase-3 was maximal 6 h after SNP treatment. However, active caspase-3 and apoptosis were dose-dependently inhibited by ESF treatment. Flow cytometry analysis showed that ESF significantly inhibited cell apoptosis (p<0.05) and reduced the apoptotic index by 79.9% (p<0.01). These results indicate that ESF is neuroprotective in focal cerebral ischemia and the flavonoids in ESF might be responsible for its neuroprotective activity in rats, alone or in part.  相似文献   

3.
不同亚型一氧化氮合酶在脑缺血/再灌注早期的表达变化   总被引:1,自引:0,他引:1  
目的:观察脑缺血/再灌注(CI/R)早期缺血区脑组织的内皮型一氧化氮合酶(eNOS)与神经型一氧化氮合酶(nNOS)表达的变化。方法:健康wistar大鼠60只,体重200~280g,由中国医科大学动物中心提供,雌雄各半。随机分为6组(n=10):假手术组、缺血1h组、缺血2h组、再灌注0.5h组、再灌注1h组、再灌注2h组。采用线栓法制作大鼠CI/R模型,免疫组化方法检测缺血区脑组织的eNOS与nNOS蛋白表达情况。结果:与假手术组比较,CI/R模型大鼠脑组织血管内皮细胞内eNOS表达在缺血1h内升高,之后到再灌注2h内持续降低。而nNOS的表达在缺血到再灌注2h内持续上升。结论:CI/R模型中缺血区脑组织的eNOS与nNOS的变化趋势不同,表明一氧化氮在缺血性脑损伤病理过程的作用与一氧化氮合酶亚型的变化有关。  相似文献   

4.
Oxidative stress and inflammatory responses play a critical contributing factor in cerebral ischemia and reperfusion, which lead to lipid peroxidation and neuronal dysfunction that may represent a target for therapeutic intervention. The present study was aimed to elucidate the neuroprotective effect of tannic acid (TA), a natural polyphenol with potential antioxidant and antiinflammatory properties on middle cerebral artery occlusion (MCAO) model in rats. To test this hypothesis, male Wistar rats were pretreated with TA (50 mg/kg b.wt.) and then subjected to 2-h MCAO followed by 22 h of reperfusion. After 2-h MCAO/22-h reperfusion, neurological deficit, infarct sizes, activities of antioxidant enzymes, cytokine level, histology, and immunohistochemistry were used to analyze the expression of glial fibrillary acidic protein (GFAP) in ischemic brain. The pretreatment of TA showed a marked reduction in infarct size, improved neurological function, suppressed neuronal loss, and downregulated the GFAP expression in MCAO rats. A significantly depleted activity of antioxidant enzymes and content of glutathione in MCAO group were protected significantly in MCAO group pretreated with TA. Conversely, the elevated level of thiobarbituric acid reactive species and cytokines in MCAO group was attenuated significantly in TA-pretreated group when compared with MCAO group. The results indicated that TA protected the brain from damage caused by MCAO, and this effect may thorough diminish the oxidative stress and inflammatory responses.  相似文献   

5.
Our present study was performed to investigate whether hydroxyethylpuerarin (HEP) has a neuroprotective effect on brain injury after focal cerebral ischemia/reperfusion by middle cerebral artery occlusion (MCAO) in adult male Wistar rats. Animals were subjected to one hour of middle cerebral artery occlusion and 48 hours of reperfusion with the pretreatment of drugs (HEP 15, 30, 60 mg/ kg or nimodipine 0.4 mg/kg i.v.) or vehicle. The behavioral tests were used to evaluate the damage to central nervous system. The percentage of brain infarct area was assessed in the brain slices stained with 2% solution of 2, 3, 5-triphenyl tetrazolium chloride (TTC). The pathologic histological changes were observed by H&E staining and the occurrence of apoptosis was determined by flow cytometry. The results showed that pretreatment with HEP at doses of 15, 30, 60 mg/kg exhibited significant neuroprotective effects on rats against focal cerebral ischemia-reperfusion injury by markedly decreasing neurological deficit scores and the percentage of infarct area, reducing necrosis and apoptosis of neurons. All these findings suggest that HEP might provide neuroprotection against focal cerebral ischemia/reperfusion injury probably through its antioxidant and anti-inflammatory property.  相似文献   

6.
目的:研究脑缺血/再灌注(I/R)损伤后瘦素受体(OB-R)表达的变化情况.方法:雄性成年Wistar大鼠20只,随机分成4组:假手术24 h、72 h对照组及I/R 24 h、72 h实验组.线栓法制备大鼠局灶性脑皮质I/R损伤模型,在脑I/R后相应时间点分别处死大鼠,采用免疫组织化学、免疫电镜方法观察大脑皮质OB-R的表达,在光镜及电镜下观察神经元损伤改变.结果:左顶叶皮质锥体细胞、血管内皮、脉络丛发现有OB-R阳性表达;与假手术对照组相比,I/R 24 h(I/R早期)锥体细胞OB-R免疫反应阳性细胞表达减少(P<0.05),I/R 72 h(I/R晚期)锥体细胞OB-R免疫反应阳性细胞减少更明显(P<0.001);光镜及电镜对缺血中心区神经元的观察均显示I/R晚期的神经元损伤明显重于早期.结论:脑I/R损伤后早期神经元损害和迟发性神经元损害均伴随有OB-R的表达减少,且迟发性神经元损害表达减少更明显,因此在脑梗塞的防治中有必要对瘦素及其OB-R的作用进一步研究.  相似文献   

7.
目的:探讨产前应激对雄性子代大鼠大脑中动脉缺血/再灌注后星形胶质细胞的影响。方法:SD孕鼠随机分为有产前应激处理(妊娠第15到21天每日3次限制活动)和无产前应激处理,并对其雄性子代大鼠采用线栓法制备大脑中动脉闭塞(MCAO)模型,共分为产前应激+假手术组、MCAO模型组、产前应激+MCAO组(n=10),于再灌注后第5天检测脑梗死体积,免疫荧光双标染色检测缺血灶边缘区星形胶质细胞形态及促红细胞生成素肝细胞受体A4(EphA4)和胶质纤维酸性蛋白(GFAP)的共表达情况,并采用Western blot检测EphA4、GFAP和神经蛋白聚糖(Neurocan)蛋白表达。结果:产前应激+MCAO组子代大鼠脑梗死体积百分比、EphA4、GFAP和Neurocan蛋白表达均较MCAO组显著增加(P均<0.05),且GFAP阳性细胞形态学改变及EphA4/GFAP共表达也较MCAO组明显。结论:产前应激可能改变子代大鼠脑缺血/再灌注后星形胶质细胞上EphA4受体的表达,促进星形胶质细胞活化,产生神经蛋白聚糖。  相似文献   

8.
目的:研究L-丝氨酸对大鼠脑缺血/再灌注损伤保护作用的时间窗,并对其作用机制进行初探。方法:SD雄性大鼠随机分为假手术组、对照组、L-丝氨酸3h治疗组、6h治疗组、12h治疗组、24h治疗组。采用大脑中动脉栓塞(MCAO)建立大鼠局灶性脑缺血模型,2h后拔出栓线形成再灌注,各组分别于术后相应的时间点给予L-丝氨酸200mg/kg腹腔注射2次,对照组注射等剂量的生理盐水,所有动物再灌注后48h观测神经行为学评分、脑梗死体积。另取假手术组、对照组、L-丝氨酸6h治疗组,分别测定MCAO后脑内超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量,炎症细胞因子TNF-α、IL-6水平以及观察细胞超微结构改变。结果:与对照组相比,术后3h、6h给予L-丝氨酸治疗能显著降低大鼠神经行为学评分,减少脑梗死体积(P〈0.01或P〈0.05),12h仅能降低神经行为学评分(P〈0.05),而24h与对照组间均无差异;L-丝氨酸能提高MCAO后脑内SOD活性,降低MDA以及TNF-α、IL-6的水平,同时改善细胞超微结构。结论:在一定时间窗内,L-丝氨酸对大鼠MCAO具有明显的神经保护作用,其机制可能与降低氧自由基损伤,减轻炎症反应有关。  相似文献   

9.
We previously reported that inhibition of Rho-kinase (ROCK) by hydroxyl fasudil improves cognitive deficit and neuronal damage in rats with chronic cerebral ischemia (Huang et al., Cell Mol Neurobiol 28:757–768, 2008). In this study, fasudil mesylate (FM) was investigated for its neuroprotective potential in rats with ischemia following middle cerebral artery occlusion (MCAO) and reperfusion. The effect of fasudil mesylate was also studied in rat brain cortical and hippocampal slices treated with oxygen-glucose deprivation (OGD) injury. Gross anatomy showed that cerebral infarct size, measured with 2,3,5-triphenyltetrazolium chloride (TTC) staining, was significantly smaller in the FM-treated than in the non-FM-treated ischemic rats. In the brain regions vulnerable to ischemia of ischemic rats, fasudil mesylate was also found to significantly restore the enzyme protein expression level of endothelial nitric oxide synthase (eNOS), which was decreased in ischemia. However, it remarkably reduced the protein synthesis of inducible nitric oxide synthase (iNOS) that was induced by ischemia and reperfusion. In rat brain slices treated with OGD injury, fasudil mesylate increased the neuronal cell viability by 40% for cortex and by 61% for hippocampus, respectively. Finally, in the presence of OGD and fasudil mesylate, superoxide dismutase (SOD) activity was increased by 50% for cortex and by 58% for hippocampus, compared to OGD only group. In conclusion, our in vivo study showed that fasudil mesylate not only decreased neurological deficit but also reduced cerebral infarct size, possibly and at least partially by augmenting eNOS protein expression and inhibiting iNOS protein expression after ischemia-reperfusion. Xian-Ju Huang contributed equally to this article.  相似文献   

10.
Statins have recently been shown to exert neuronal protection in ischemic stroke. Reactive oxygen species, specifically superoxide formed during the early phase of reperfusion, augment neuronal injury. NADPH oxidase is a key enzyme for superoxide production. The present study tested the hypothesis that atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in transient focal ischemia. Transient focal ischemia was created in halothane-anesthetized adult male Sprague-Dawley rats (250-300 g) by middle cerebral artery occlusion (MCAO). Atorvastatin (Lipitor, 10 mg/kg sc) was administered three times before MCAO. Infarct volume was measured by triphenyltetrazolium chloride staining. NADPH oxidase enzymatic activity and superoxide levels were quantified in the ischemic core and penumbral regions by lucigenin (5 microM)-enhanced chemiluminescence. Expression of NADPH oxidase membrane subunit gp91(phox) and membrane-translocated subunit p47(phox) and small GTPase Rac-1 was analyzed by Western blot. NADPH oxidase activity and superoxide levels increased after reperfusion and peaked within 2 h of reperfusion in the penumbra, but not in the ischemic core, in MCAO rats. Atorvastatin pretreatment prevented these increases, blunted expression of membrane subunit gp91(phox), and prevented translocation of cytoplasmic subunit p47(phox) to the membrane in the penumbra 2 h after reperfusion. Consequently, cerebral infarct volume was significantly reduced in atorvastatin-treated compared with nontreated MCAO rats 24 h after reperfusion. These results indicate that atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in transient focal ischemia.  相似文献   

11.
目的:rt-PA溶栓为缺血性卒中最有效的治疗方法,脑血流再通后挽救濒临死亡的神经细胞同时,也可能发生更为严重而持久的脑缺血再灌注损伤。本研究探讨联合应用局部亚低温(32-35℃)及硫酸镁对局灶性脑缺血再灌注大鼠的保护作用及其可能机制。方法:通过线栓法建立大鼠大脑中动脉阻塞(MCAO)及再通模型,将50只雄性Wistar大鼠随机分为假手术组、常温组、亚低温组、硫酸镁组、亚低温+硫酸镁组,每组10例,采用Longa神经功能评分、TTC染色、干湿重法、TUNEL技术,检测和比较各组脑缺血再灌注后大鼠的神经功能、脑梗死体积、脑组织含水量及凋亡细胞数。结果:与常温组相比,亚低温组与亚低温+硫酸镁组的梗死体积、神经功能评分、脑组织含水量、凋亡细胞数均明显降低,差异有显著意义(P0.05);而与亚低温组相比,亚低温+硫酸镁组局灶脑缺血大鼠的脑梗死体积、神经功能评分、脑组织含水量、凋亡细胞数均显著减少,差异有显著意义(P0.05)。结论:与单独应用亚低温相比,局部亚低温与硫酸镁联合应用,对局灶性脑缺血再灌注大鼠可发挥更有效的脑保护作用。其机制可能与抑制脑缺血再灌注后凋亡及减轻脑水肿有关。二者联用可能为缺血性卒中患者提供一种减轻溶栓后再灌注损伤的有效脑保护方法。  相似文献   

12.
The aim of this study was to investigate the temporal and spatial relationship between phospho-Rb (ser 795) and neuronal apoptotic death in rats subjected to transient focal cerebral ischemia. We found increased phosphorylation of Rb and translocation from neuronal nucleus to cytoplasm in the penumbra zone at 12 h, 1 day, 3 days and 7 days after middle cerebral artery occlusion (MCAO)/reperfusion, compared with sham-operated controls. At 12 h and 1 day, phospho-Rb appeared to be colocalizated with TUNEL staining in neurons, but staining was not colocalizated at 3 days and 7 days. These results demonstrated that cytoplasmic translocation of phospho-Rb from nucleus of neurons occurs in potential apoptotic neurons in the early stages of ischemia/reperfusion, suggesting that the Rb pathway may only be involved in early neuronal apoptosis and may be not an apoptotic signal in the late stages of transient cerebral ischemia. Ying Yu and Xiang Luo contributed equally to this work.  相似文献   

13.
Kaundal RK  Shah KK  Sharma SS 《Life sciences》2006,79(24):2293-2302
Oxidative stress induced cell injury is reported to contribute to the pathogenesis of cerebral ischemia. Reactive oxygen species such as hydrogen peroxide (H2O2) and superoxide radical along with nitric oxide and peroxynitrite generated during ischemia-reperfusion injury, causes the overactivation of poly (ADP-ribose) polymerase (PARP) leading to neuronal cell death. In the present study we have evaluated the effects of PARP inhibitor, 8-hydroxy-2 methyl-quinazolin-4-[3H]one (NU1025) in H2O2 and 3-morphilinosyndonimine (SIN-1) induced cytotoxicity in PC12 cells as well as in middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia in rats. Exposure of PC12 cells to H2O2 (0.4 mM) and SIN-1 (0.8 mM) resulted in a significant decrease in cell viability after 6 h. Pretreatment with NU1025 (0.2 mM) restored cell viability to approximately 73 and 82% in H2O2 and SIN-1 injured cells, respectively. In MCAO studies, NU1025 was administered at different time points (1 h before reperfusion, immediately before reperfusion, 3 h after reperfusion and 6 h after reperfusion). NU1025 at 1 and 3 mg/kg reduced total infarct volume to 25% and 45%, respectively, when administered 1 h before reperfusion. NU1025 also produced significant improvement in neurological deficits. Neuroprotection with NU1025 was associated with reduction in PAR accumulation, reversal of brain NAD depletion and reduction in DNA fragmentation. Results of this study demonstrate the neuroprotective activity of NU1025 and suggest its potential in cerebral ischemia.  相似文献   

14.
《Phytomedicine》2014,21(1):68-74
Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (p < 0.01) and reduce cerebral infarct volume of focal cerebral ischemia rats remarkably (p < 0.05–0.01). Meanwhile, each group could alleviate cerebral water content and cerebral index (p < 0.05–0.01) and regulate oxidative stress of focal cerebral ischemia rats obviously (p < 0.05–0.01). Activities of middle group corresponded with that treated with positive control drug. The results obtained here showed that Dragon's blood dropping pills had protective effects on focal cerebral ischemia rats.  相似文献   

15.
Inhibition of ionotropic glutamate receptors (iGluRs) is a potential target of therapy for ischemic stroke. Perampanel is a potent noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist with good oral bioavailability and favorable pharmacokinetic properties. Here, we investigated the potential protective effects of perampanel against focal cerebral ischemia in a middle cerebral artery occlusion (MCAO) model in rats. Oral administration with perampanel significantly reduced MCAO-induced brain edema, brain infarct volume, and neuronal apoptosis. These protective effects were associated with improved functional outcomes, as measured by foot-fault test, adhesive removal test, and modified neurological severity score (mNSS) test. Importantly, perampanel was effective even when the administration was delayed to 1 h after reperfusion. The results of enzyme-linked immunosorbent assay (ELISA) showed that perampanel significantly decreased the expression of pro-inflammatory cytokines IL-1β and TNF-α, whereas it increased the levels of anti-inflammatory cytokines IL-10 and TGF-β1 after MCAO. In addition, perampanel treatment markedly decreased the expression of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS), and also inhibited nitric oxide (NO) generation in MCAO-injured rats at 24 and 72 h after reperfusion. In conclusion, this study demonstrated that the orally active AMPAR antagonist perampanel protects against experimental ischemic stroke via regulating inflammatory cytokines and NOS pathways.  相似文献   

16.
17.
Epidemiologic studies have shown that foods rich in polyphenols, such as flavonoids, can lower the risk of ischemic disease; however, the mechanism of protection has not been clearly investigated. In this study, we hypothesized that pretreatment effect of catechin hydrate (CH) on functional outcome, neuronal damage and on secondary injuries in the ischemic brain of rats. To test this hypothesis, male Wistar rats were pretreated with CH (20 mg/kg b.wt) for 21 days and then subjected to 2 h middle cerebral artery occlusion (MCAO) followed by 22 h of reperfusion. After 2 h MCAO/22 h reperfusion, neurological deficit, infarct sizes, activities of antioxidant enzymes and cytokines level were measured. Immunohistochemistry and western blot were used to analyse the expression of glial fibrillary acidic protein (GFAP), inducible nitric oxide (iNOS) and NF-kB in ischemic brain. The administration of CH showed marked reduction in infarct size, reduced the neurological deficits, suppressed neuronal loss and downregulate the iNOS, GFAP and NF-kB expression in MCAO rats. A significantly depleted activity of antioxidant enzymes and content of glutathione in MCAO group were protected significantly in MCAO group pretreated with CH. Conversely, the elevated level of thiobarbituric acid reactive species and cytokines in MCAO group was attenuated significantly in CH pretreated group when compared with MCAO group. The results indicated that CH protected the brain from damage caused by MCAO, and this effect may be through downregulation of NF-kB expression.  相似文献   

18.
Focal brain lesions such as transient focal cerebral ischemia can lead to neuronal damage in remote areas, including the ipsilateral substantia nigra and hippocampus, as well as in the ischemic core. In this study, we investigated acute changes in the ipsilateral hippocampus from 1 up to 7 days after 90 min of transient focal cerebral ischemia in rats, using anti-NeuN (neuronal nuclei), anti-Cu/Zn-superoxide dismutase (Cu/Zn-SOD), anti-Mn-SOD, anti-neuronal nitric oxide synthase (nNOS), anti-inducible NOS (iNOS), anti-glial fibrillary acidic protein (GFAP), anti-ionized calcium-binding adaptor molecule 1(Iba 1) and anti-2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) antibodies. In our western blot and histochemical analyses, present results show that transient focal cerebral ischemia in rats can cause a severe and acute damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector. The present findings also demonstrate that the expression of iNOS produced by Iba 1-immunopositive microglia precedes the damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector after transient focal cerebral ischemia. In contrast, our results suggest that increased reactive oxygen species (ROS) production during reperfusion cannot lead to damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector after transient focal cerebral ischemia, because of an insufficient expression of Cu/Zn-SOD and Mn-SOD. Our double-labeled immunohistochemical study demonstrates that the overexpression of iNOS produced by Iba 1-immunopositive microglia may play a pivotal role in the damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector at an acute stage after transient focal cerebral ischemia.  相似文献   

19.
Free radical induced neuronal damage is implicated in cerebral ischemia reperfusion (IR) injury and antioxidants are reported to have neuroprotective activity. Several in vitro and in vivo studies have proved the antioxidant potential of curcumin and its metabolites. Hence, in the present study the neuroprotective potential of curcumin was investigated in middle cerebral artery occlusion (MCAO) induced focal cerebral IR injury. 2 h of MCAO and 22 h of reperfusion resulted in the infarct volume of 210.39 +/- 31.25 mm3. Administration of curcumin 100 and 300 mg/kg, i.p. 30 min. after MCAO produced 37.23 +/- 5.10% and 46.39 +/- 10.23% (p < 0.05) reduction in infarct volume, respectively. Ischemia induced cerebral edema was reduced in a dose dependent manner. Curcumin at 300 mg/kg, i.p. produced 50.96 +/- 6.04% reduction in edema (p < 0.05) volume. Increase in lipid peroxidation after MCAO in ipsilateral and contralateral hemisphere of brain was observed, which was reduced by curcumin (300 mg/kg, i.p.)-treatment. Decrease in superoxide dismutase and glutathione peroxidase activity was observed in ipsilateral hemisphere of MCAO animal. Curcumin-treatment (300 mg/kg, i.p.) prevented IR injury mediated fall in glutathione peroxide activity. Peroxynitrite measured using rhodamine123 fluorescence and anti-nitrotyrosine immunofluorescence indicated increased peroxynitrite formation after IR insult. Curcumin-treatment reduced peroxynitrite formation and hence the extent of tyrosine nitration in the cytosolic proteins. These results suggest the neuroprotective potential of curcumin in cerebral ischemia and is mediated through its antioxidant activity.  相似文献   

20.
Srinivasan K  Sharma SS 《Life sciences》2012,90(3-4):154-160
AimsThe role of nitric oxide (NO) and endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of cerebral ischemic/reperfusion (I/R) injury and diabetes. The aim of the study was to investigate the neuroprotective potential of 3-bromo-7-nitroindazole (3-BNI), a potent and selective neuronal nitric oxide synthase (nNOS) inhibitor against ER stress and focal cerebral I/R injury associated with comorbid type 2 diabetes in-vivo.Main methodsType 2 diabetes was induced by feeding high-fat diet and streptozotocin (35 mg/kg) treatment in rats. Focal cerebral ischemia was induced by 2 h middle cerebral artery occlusion (MCAO) followed by 22 h of reperfusion. Immunohistochemistry and western blotting methods were employed for the detection and expression of ER stress/apoptosis markers [78 kDa glucose regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)]. TUNEL assay for DNA fragmentation was also performed.Key findingsThe diabetic rats subjected to cerebral I/R had prominent neurological damage and functional deficits compared with sham-operated rats. Massive DNA fragmentation was observed in ischemic penumbral region of diabetic brains. Concomitantly, the enhanced immunoreactivity and expression of ER stress/apoptosis markers were noticed. 3-BNI (30 mg/kg, i.p.) treatment significantly inhibited the cerebral infarct, edema volume and improved functional recovery of neurological deficits. The neuroprotection was further evident by lesser DNA fragmentation with a concomitant reduction of GRP78 and CHOP.SignificanceThe study demonstrates the neuroprotective potential of 3-BNI in diabetic stroke model which may be partly due to inhibition of ER stress pathway involving CHOP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号