共查询到20条相似文献,搜索用时 0 毫秒
1.
Bayesian inference for a bivariate binomial distribution 总被引:1,自引:0,他引:1
2.
3.
Nonhomogeneous substitution models have been introduced for phylogenetic inference when the substitution process is nonstationary, for example, when sequence composition differs between lineages. Existing models can have many parameters, and it is then difficult and computationally expensive to learn the parameters and to select the optimal model complexity. We extend an existing nonhomogeneous substitution model by introducing a reversible jump Markov chain Monte Carlo method for efficient Bayesian inference of the model order along with other phylogenetic parameters of interest. We also introduce a new hierarchical prior which leads to more reasonable results when only a small number of lineages share a particular substitution process. The method is implemented in the PHASE software, which includes specialized substitution models for RNA genes with conserved secondary structure. We apply an RNA-specific nonhomogeneous model to a structure-based alignment of rRNA sequences spanning the entire tree of life. A previous study of the same genes from a similar set of species found robust evidence for a mesophilic last universal common ancestor (LUCA) by inference of the G+C composition at the root of the tree. In the present study, we find that the helical GC composition at the root is strongly dependent on the root position. With a bacterial rooting, we find that there is no longer strong support for either a mesophile or a thermophile LUCA, although a hyperthermophile LUCA remains unlikely. We discuss reasons why results using only RNA helices may differ from results using all aligned sites when applying nonhomogeneous models to RNA genes. 相似文献
4.
When making Bayesian inferences we need to elicit an expert's opinion to set up the prior distribution. For applications in clinical trials, we study this problem with binary variables. A critical and often ignored issue in the process of eliciting priors in clinical trials is that medical investigators can seldom specify the prior quantities with precision. In this paper, we discuss several methods of eliciting beta priors from clinical information, and we use simulations to conduct sensitivity analyses of the effect of imprecise assessment of the prior information. These results provide useful guidance for choosing methods of eliciting the prior information in practice. 相似文献
5.
6.
7.
8.
9.
Yang Z 《Molecular biology and evolution》2007,24(8):1639-1655
The star-tree paradox refers to the conjecture that the posterior probabilities for the three unrooted trees for four species (or the three rooted trees for three species if the molecular clock is assumed) do not approach 1/3 when the data are generated using the star tree and when the amount of data approaches infinity. It reflects the more general phenomenon of high and presumably spurious posterior probabilities for trees or clades produced by the Bayesian method of phylogenetic reconstruction, and it is perceived to be a manifestation of the deeper problem of the extreme sensitivity of Bayesian model selection to the prior on parameters. Analysis of the star-tree paradox has been hampered by the intractability of the integrals involved. In this article, I use Laplacian expansion to approximate the posterior probabilities for the three rooted trees for three species using binary characters evolving at a constant rate. The approximation enables calculation of posterior tree probabilities for arbitrarily large data sets. Both theoretical analysis of the analogous fair-coin and fair-balance problems and computer simulation for the tree problem confirmed the existence of the star-tree paradox. When the data size n --> infinity, the posterior tree probabilities do not converge to 1/3 each, but they vary among data sets according to a statistical distribution. This distribution is characterized. Two strategies for resolving the star-tree paradox are explored: (1) a nonzero prior probability for the degenerate star tree and (2) an increasingly informative prior forcing the internal branch length toward zero. Both appear to be effective in resolving the paradox, but the latter is simpler to implement. The posterior tree probabilities are found to be very sensitive to the prior. 相似文献
10.
11.
12.
A hierarchical animal model was developed for inference on genetic merit of livestock with uncertain paternity. Fully conditional posterior distributions for fixed and genetic effects, variance components, sire assignments and their probabilities are derived to facilitate a Bayesian inference strategy using MCMC methods. We compared this model to a model based on the Henderson average numerator relationship (ANRM) in a simulation study with 10 replicated datasets generated for each of two traits. Trait 1 had a medium heritability (h2) for each of direct and maternal genetic effects whereas Trait 2 had a high h2 attributable only to direct effects. The average posterior probabilities inferred on the true sire were between 1 and 10% larger than the corresponding priors (the inverse of the number of candidate sires in a mating pasture) for Trait 1 and between 4 and 13% larger than the corresponding priors for Trait 2. The predicted additive and maternal genetic effects were very similar using both models; however, model choice criteria (Pseudo Bayes Factor and Deviance Information Criterion) decisively favored the proposed hierarchical model over the ANRM model. 相似文献
13.
14.
15.
16.
Effects of branch length uncertainty on Bayesian posterior probabilities for phylogenetic hypotheses 总被引:1,自引:0,他引:1
In Bayesian phylogenetics, confidence in evolutionary relationships is expressed as posterior probability--the probability that a tree or clade is true given the data, evolutionary model, and prior assumptions about model parameters. Model parameters, such as branch lengths, are never known in advance; Bayesian methods incorporate this uncertainty by integrating over a range of plausible values given an assumed prior probability distribution for each parameter. Little is known about the effects of integrating over branch length uncertainty on posterior probabilities when different priors are assumed. Here, we show that integrating over uncertainty using a wide range of typical prior assumptions strongly affects posterior probabilities, causing them to deviate from those that would be inferred if branch lengths were known in advance; only when there is no uncertainty to integrate over does the average posterior probability of a group of trees accurately predict the proportion of correct trees in the group. The pattern of branch lengths on the true tree determines whether integrating over uncertainty pushes posterior probabilities upward or downward. The magnitude of the effect depends on the specific prior distributions used and the length of the sequences analyzed. Under realistic conditions, however, even extraordinarily long sequences are not enough to prevent frequent inference of incorrect clades with strong support. We found that across a range of conditions, diffuse priors--either flat or exponential distributions with moderate to large means--provide more reliable inferences than small-mean exponential priors. An empirical Bayes approach that fixes branch lengths at their maximum likelihood estimates yields posterior probabilities that more closely match those that would be inferred if the true branch lengths were known in advance and reduces the rate of strongly supported false inferences compared with fully Bayesian integration. 相似文献
17.
18.
A common problem in molecular phylogenetics is choosing a model of DNA substitution that does a good job of explaining the DNA sequence alignment without introducing superfluous parameters. A number of methods have been used to choose among a small set of candidate substitution models, such as the likelihood ratio test, the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and Bayes factors. Current implementations of any of these criteria suffer from the limitation that only a small set of models are examined, or that the test does not allow easy comparison of non-nested models. In this article, we expand the pool of candidate substitution models to include all possible time-reversible models. This set includes seven models that have already been described. We show how Bayes factors can be calculated for these models using reversible jump Markov chain Monte Carlo, and apply the method to 16 DNA sequence alignments. For each data set, we compare the model with the best Bayes factor to the best models chosen using AIC and BIC. We find that the best model under any of these criteria is not necessarily the most complicated one; models with an intermediate number of substitution types typically do best. Moreover, almost all of the models that are chosen as best do not constrain a transition rate to be the same as a transversion rate, suggesting that it is the transition/transversion rate bias that plays the largest role in determining which models are selected. Importantly, the reversible jump Markov chain Monte Carlo algorithm described here allows estimation of phylogeny (and other phylogenetic model parameters) to be performed while accounting for uncertainty in the model of DNA substitution. 相似文献
19.
20.
Alexei J. Drummond Tanja Stadler 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2016,371(1699)
Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock'', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. 相似文献