首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Existing evidence suggests that neuropeptide Y (NPY) acts as a neurotransmitter in vascular smooth muscle and is coreleased with norepinephrine from sympathetic nerves. We hypothesized that release of NPY stimulates NPY Y(1) receptors in the skeletal muscle vasculature to produce vasoconstriction during dynamic exercise. Eleven mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. In resting dogs (n = 4), a 2.5-mg bolus of BIBP-3226 (NPY Y(1) antagonist) infused into the femoral artery increased external iliac conductance by 150 +/- 82% (1.80 +/- 0.44 to 3.50 +/- 0.14 ml.min(-1).mmHg(-1); P < 0.05). A 10-mg bolus of BIBP-3226 infused into the femoral artery in dogs (n = 7) exercising on a treadmill at a moderate intensity (6 miles/h) increased external iliac conductance by 28 +/- 6% (6.00 +/- 0.49 to 7.64 +/- 0.61 ml.min(-1).mmHg(-1); P < 0.05), whereas the solvent vehicle did not (5.74 +/- 0.51 to 5.98 +/- 0.43 ml.min(-1).mmHg(-1); P > 0.05). During exercise, BIBP-3226 abolished the reduction in conductance produced by infusions of the NPY Y(1) agonist [Leu(31),Pro(34)]NPY (-19 +/- 3 vs. 0.5 +/- 1%). Infusions of BIBP-3226 (n = 7) after alpha-adrenergic receptor antagonism with prazosin and rauwolscine also increased external iliac conductance (6.82 +/- 0.43 to 8.22 +/- 0.48 ml.min(-1).mmHg(-1); P < 0.05). These data support the hypothesis that NPY Y(1) receptors produce vasoconstriction in exercising skeletal muscle. Furthermore, the NPY Y(1) receptor-mediated tone appears to be independent of alpha-adrenergic receptor-mediated vasoconstriction.  相似文献   

3.
The NPY Y1-receptor selective antagonist BIBP3226 exerts a dual control on the cytosolic free calcium concentration ([Ca2+]i) in NPY Y1 receptor-transfected Chinese Hamster Ovary Cells (CHO-Y1 cells). It is a potent inhibitor of the NPY-evoked increase in [Ca2+]i. This can be ascribed to its antagonistic properties for the NPY Y, receptor since its less active stereoisomer, BIBP3435, is much less potent. However, when its concentration exceeds 1 microM, BIBP3226 produces a large increase in [Ca2+]i on its own. This effect is mimicked by BIBP3435 and it also occurs in wild type CHO-K1 cells. These latter cells do not contain high affinity binding sites for [3H]NPY and [3H]BIBP3226 and, hence, no endogenous NPY Y1 receptors. It is concluded that, at moderately high concentrations, the NPY Y1 receptor antagonist BIBP3226 and its entantiomer BIBP3435 are able to increase the [Ca2+ ]i in CHO cells either by stimulating another receptor or by directly affecting cellular mechanisms that are involved in calcium homeostasis.  相似文献   

4.
125I-[Leu31,Pro34]peptide YY (PYY) and 125I-PYY3-36, initially described as selective neuropeptide Y Y1 and Y2 receptor ligands, respectively, were recently shown to label also Y4 and Y5 receptors. We used receptor autoradiography to assess whether these ligands can be reliably used to investigate the various neuropeptide Y receptors in rat forebrain. In most of the brain regions examined (in coronal sections at the level of dorsal hippocampus), specific 125I-[Leu31,Pro34]PYY binding was completely inhibited by 1 microM BIBP-3226, a selective Y1 receptor ligand, but unaffected by 10 nM rat pancreatic polypeptide, selectively inhibiting Y4 receptors, suggesting that Y4 receptors are present in negligible numbers compared with Y1 receptors in the areas examined. Significant numbers of BIBP-3226-insensitive 125I-[Leu31,Pro34]PYY binding sites were measured in the CA3 subfield of the hippocampus only, possibly representing Y5 receptors. 125I-PYY3-36 binding was unchanged by 1 microM BIBP-3226, whereas a population of 125I-PYY3-36 binding sites was sensitive to 100 nM [Leu31,Pro34]neuropeptide Y, likely representing Y5 receptors. The possibility of distinguishing between Y2 and Y5 receptors using 125I-PYY3-36 as radioligand was validated by their different regional distribution and their distinct changes 24 h after kainate seizures, i.e., binding to Y5 receptors was selectively decreased in the outer cortex, whereas binding to Y2 receptors was enhanced in the hippocampus. Thus, the use of selective unlabeled compounds is required for distinguishing the various receptor subtypes labeled by 125I-[Leu31,Pro34]PYY and 125I-PYY3-36 in rat brain tissue.  相似文献   

5.
Bovine chromaffin cells have been used in a variety of studies designed to reveal different aspects of neuropeptide Y (NPY) action. Pharmacological data have defined five NPY receptor subtypes, only one of which (Y3) has not been cloned. Some studies with bovine chromaffin cells have concluded that the effects of NPY on this cell type are mediated by the Y3 subtype. Previous work from our laboratory demonstrates that a Y1 subtype mediates the effect of NPY in this tissue. In the current studies we provide further evidence for the existence of the Y1 subtype in bovine chromaffin cells. BIBP3226, the selective Y1 antagonist, potently displaces [125I]NPY from its binding site IC50 = 1.91 x 10(-9) M. Moreover, [125I]BIBP3226 binds to bovine chromaffin cell membranes with high affinity (IC50 = 5.9 x 10(-8) M). Examination of BIBP3226 antagonism of NPY inhibition of forskolin stimulated cyclic AMP accumulation reveals that it is a competitive antagonist with a K(B) similar to the IC50 for [125I]BIBP3226 binding. Northern blot analysis using a porcine cDNA clone for the Y1 subtype demonstrates a 3.5-kb mRNA species in chromaffin cells. These data identify the bovine chromaffin cell NPY receptor as a Y1 subtype.  相似文献   

6.
Previous studies have provided evidence of a non-noradrenergic contributor to reflex cutaneous vasoconstriction in humans but did not identify the transmitter responsible. To test whether neuropeptide Y (NPY) has a role, in two series of experiments we slowly reduced whole body skin temperature (TSK) from 34.5 to 31.7 degrees C. In protocol 1, Ringer solution and the NPY receptor antagonist BIBP-3226 alone were delivered intradermally via microdialysis. In protocol 2, yohimbine plus propranolol (Yoh + Pro), Yoh + Pro in combination with BIBP-3226, and Ringer solution were delivered to antagonize locally the vasomotor effects of NPY and norepinephrine. Blood flow was measured by laser Doppler flowmetry (LDF). Mean arterial blood pressure (MAP) was monitored at the finger (Finapres). In protocol 1, cutaneous vascular conductance (CVC) fell by 45%, to 55.1 +/- 5.6% of baseline at control sites (P < 0.05). At BIBP-3226-treated sites, CVC fell by 34.1% to 65.9 +/- 5.0% (P < 0.05; P < 0.05 between sites). In protocol 2, during body cooling, CVC at control sites fell by 32.6%, to 67.4 +/- 4.3% of baseline; at sites treated with Yoh + Pro, CVC fell by 18.7%, to 81.3 +/- 4.4% of baseline (P < 0.05 vs. baseline; P < 0.05 vs. control) and did not fall significantly at sites treated with BIBP-3226 + Yoh + Pro (P > 0.05; P < 0.05 vs. other sites). After cooling, exogenous norepinephrine induced vasoconstriction at control sites (P < 0.05) but not at sites treated with Yoh + Pro + BIBP-3226 (P > 0.05). These results indicate that NPY participates in sympathetically mediated cutaneous vasoconstriction in humans during whole body cooling.  相似文献   

7.
We have evaluated 3 newly developed neuropeptide Y receptor antagonists in various in vitro binding and bioassays: BIBO3304 (Y1), T4[NPY33-36]4 (Y2), and CGP71683A (Y5). In rat brain homogenates, BIBO3304 competes for the same population of [125I][Leu31,Pro34] peptide YY (PYY) binding sites (75%) as BIBP3226, but with a 10 fold greater affinity (IC50 of 0.2 +/- 0.04 nM for BIBO3304 vs. 2.4 +/- 0.07 nM for BIBP3226),while CGP71683A has high affinity for 25% of specific [125I][Leu31,Pro34]PYY binding sites. Both BIBO3304 and CGP71683A (at 1.0 microM) were unable to compete for a significant proportion of specific [125I]PYY3-36/Y2 sites. The purported Y2 antagonist T4[NPY33-36]4 competed against [125I]PYY3-36 binding sites with an affinity of 750 nM. These results were confirmed in HEK 293 cells transfected with either the rat Y1, Y2, Y4, or Y5 receptor cDNA. BIBO3304, but not CGP71683A, competed with high affinity for [125I][Leu31,Pro34]PYY binding sites in HEK 293 cells transfected with the rat Y1 receptor cDNA, whereas the reverse profile was observed upon transfection with the rat Y5 receptor cDNA. Additionally, both molecules were inactive at Y2 and Y4 receptor subtypes expressed in HEK 293 cells. Receptor autoradiographic studies revealed the presence of [125I][Leu31,Pro34]PYY/BIBO3304-insensitive sites in the rat brain as reported previously for BIBP3226. Finally, the selective antagonistic properties of BIBO3304 were demonstrated in a Y1 bioassay (rabbit saphenous vein; pA2 value of 9.04) while being inactive in Y2 (rat vas deferens) and Y4 (rat colon) bioassays. These results confirm the high affinity and selectivity of BIBO3304 and CGP71683A for the Y1 and Y5 receptor subtypes, respectively, while the purported Y2 antagonist, T4[NPY33-36]4 possesses rather low affinity for this receptor.  相似文献   

8.
Regulation of food intake by neuropeptide Y in goldfish   总被引:1,自引:0,他引:1  
In mammals, neuropeptide Y (NPY) is a potent orexigenic factor. In the present study, third brain ventricle (intracerebroventricular) injection of goldfish NPY (gNPY) caused a dose-dependent increase in food intake in goldfish, and intracerebroventricular administration of NPY Y1-receptor antagonist BIBP-3226 decreased food intake; the actions of gNPY were blocked by simultaneous injection of BIBP-3226. Goldfish maintained on a daily scheduled feeding regimen display an increase in NPY mRNA levels in the telencephalon-preoptic area and hypothalamus shortly before feeding; however, a decrease occured in optic tectum-thalamus. In both fed and unfed fish, brain NPY mRNA levels decreased after scheduled feeding. Restriction in daily food ration intake for 1 wk or food deprivation for 72 h resulted in increased brain NPY mRNA levels. Results from these studies demonstrate that NPY is a physiological brain signal involved in feeding behavior in goldfish, mediating its effects, at least in part, through Y1-like receptors in the brain.  相似文献   

9.
We examined the contributions of the cotransmitters norepinephrine (NE), ATP, and neuropeptide Y (NPY) to sympathetically evoked vasoconstriction in the rat tail artery in isolated vascular rings by using 1-100 stimulation impulses at 20 Hz. Phentolamine (2 microM), the alpha-adrenoceptor antagonist, markedly reduced responses to all stimuli, although responses to lower impulse numbers were reduced less than responses to longer trains. The purinergic receptor antagonist suramin (100 microM) reduced all responses, but to a much greater extent with few impulse trains. Responses were further reduced or abolished by addition of the second antagonist. Any remaining responses were abolished by the NPY-Y(1) receptor antagonist BIBP-3226 (75 nM). NPY had a direct agonist action and potentiated sympathetically mediated responses. NPY (75 nM) potentiated responses and BIBP-3226 decreased responses to 2- and 20-impulse trains. Both affected responses from 2 impulses to >20 impulses, but there was no preferential effect on purinergic contributions to responses because neurally released NPY potentiated both "pure" NE and ATP responses equally. We conclude that all three cotransmitters contribute significantly to vascular responses and their contribution varies markedly with impulse numbers. There is considerable synergy between cotransmitters, especially with lower impulse numbers where NPY contributions are greater than expected.  相似文献   

10.
Fluorescence-labeled neuropeptide Y (NPY) has been used in flow cytometric binding assays for the determination of affinity constants of NPY Y1, Y2, and Y5 receptor ligands. Because the binding of fluorescent NPY is insufficient for competition studies at the human Y4 receptor (hY4R), we replaced Glu-4 in hPP with Lys for the derivatization with cyanine-5. Because cy5-[K(4)]hPP has high affinity (Kd 5.6 nM) to the hY4R, it was used as a probe in a flow cytometric binding assay. Specific binding of cy5-[K(4)]hPP to hY4R was visualized by confocal microscopy. The hY(4)R, the chimeric G protein G(qi5) and mitochondrially targeted apoaequorin were stably coexpressed in CHO cells. Aequorin luminescence was quantified in a microplate reader and by a CCD camera. By application of these methods 3-cyclohexyl-N-[(3-1H-imidazol-4-ylpropylamino)(imino)methyl]propanamide (UR-AK49) was discovered as the first nonpeptidic Y4R antagonist (pKi 4.17), a lead to be optimized in terms of potency and selectivity.  相似文献   

11.
A three-dimensional model of the human neuropeptide Y(NPY)Y1 receptor (hY1) was constructed, energy refined and used to simulate molecular receptor interactions of the peptide ligands NPY, [L31, P34]NPY, peptide YY (PYY) and pancreatic polypeptide (PP), and of the nonpeptide antagonist R-N2-(diphenylacetyl)-N-(4-hydroxyphenyl)methyl-argininamide (BIBP3226) and its S-enantiomer BIBP3435. The best complementarity in charges between the receptor and the peptides, and the best structural accordance with experimental studies, was obtained with amino acid 1–4 of the peptides interacting with Asp194, Asp200, Gln201, Phe202 and Trp288 in the receptor. Arg33 and Arg35 of the peptides formed salt bridges with Asp104 and Asp287, respectively, while Tyr36 interacted in a binding pocket formed by Phe41, Thr42, Tyr100, Asn297, His298 and Phe302. Calculated electrostatic potentials around NPY and hY1 molecules indicated that ligand binding is initiated by electrostatic interactions between a highly positive region in the N- and C-terminal parts of the peptides, and a negative region in the extracellular receptor domains. Molecular dynamics simulations of NPY and BIBP3226 interactions with the receptor indicated rigid body motions of TMH5 and TMH6 upon NPY binding as mechanisms of receptor activation, and that BIBP3226 may act as an antagonist by constraining these motions.  相似文献   

12.
Abstract

We have studied the binding of [3H]-NPY and the newly developed non-peptide Y1 receptor antagonist [3H]-BIBP3226 to intact SK-N-MC cells and CHO-K1 cells transfected with the human NPY Y1 receptor gene i.e. CHO-Y1 cells. Whereas the association and dissociation of the specific [3H]-NPY binding was slow, the binding kinetics of [3H]-BIBP3226 binding was very rapid. Saturation binding of both radioligands reveal the presence of an apparently homogeneous population of high affinity binding sites in both cell lines. The corresponding equilibrium dissociation constants are similar for the two cell lines and are close to those obtained from previous competition binding experiments. The specific binding of both radioligands was completely and with high affinity displaced by BIBP3226 and its inactive (S)-enantiomer BIBP3435 was much less potent. Whilst the NPY Y1 agonists NPY, PYY and [Leu31-Pro34]-NPY completely and potently displaced [3H]-NPY binding, they could only displace 70 to 80 % of the [3H]-BIBP3226 binding sites in CHO-Y1 and SK-N-MC cells. A possible explanation can be that only part of the receptors are G-protein coupled. In agreement pertussis toxin was found to reduce high affinity [3H]-NPY binding sites in CHO-Y1 cells whereas [3H]-BIBP3226 binding parameters remained unchanged.  相似文献   

13.
This investigation describes the relative potencies of four peptide agonists, namely, peptide YY (PYY), [Leu3l,Pro34]PYY (Pro34pYY), neuropeptide Y (NPY), and [Leu31,Pro34]NPY (Pro34NPY), as antisecretory agents in human, rat, and mouse gastrointestinal preparations. The inhibition of agonist responses by the Y1-receptor antagonist BIBP 3226 was also tested in each preparation. An unexpectedly pronounced preference for PYY and Pro34PYY was observed in functional studies of two human epithelial lines stably transfected with the rat Y1 receptor (Y1-7 and C1Y1-6). NPY and Pro34NPY were at least an order of magnitude less effective than PYY in these functional studies but were only marginally less potent in displacement binding studies using membrane preparations of the same clonal lines. The orders of agonist potency obtained in Y1-7 and C1Y1-6 epithelia were compared with those obtained from a single human colonic adenocarcinoma cell line (Colony-6, which constitutively expresses Y1 receptors) and also from mucosal preparations of rat and mouse descending colon. Similar peptide orders of potency were obtained in rat and mouse colonic mucosae and Colony-6 epithelia, all of which exhibited PYY preference (although less pronounced than with Y1-7 and C1Y1-6 epithelia) and significant sensitivity to the Y1 receptor antagonist, BIBP 3226. We have compared the pharmacology of these five mammalian epithelial preparations and provide cautionary evidence against the reliance upon agonist concentration-response relationships alone, in the characterization of NPY receptor types.  相似文献   

14.
The neuropeptide Y (NPY) receptor subtypes Y1 and Y5 are involved in the regulation of feeding and several other physiological functions in mammals. To increase our understanding of the origin and mechanisms of the complex NPY system, we report here the cloning and pharmacological characterization of receptors Y1 and Y5 in the first non-mammal, chicken (Gallus gallus). The receptors display 80-83% and 64-72% amino acid sequence identity, respectively, with their mammalian orthologues. The three endogenous ligands NPY, peptide YY (PYY) and pancreatic polypeptide (PP) have similar affinities as in mammals, i.e. NPY and PYY have subnanomolar affinity for both receptors whereas chicken PP bound with nanomolar affinity to Y5 but not to Y1. A notable difference to mammalian receptor subtypes is that the Y1 antagonist SR120819A does not bind chicken Y1, whereas BIBP3226 does. The Y5 antagonist CGP71863A binds to the chicken Y5 receptor. Anatomically, both Y1 and Y5 have high mRNA expression levels in the infundibular nucleus which is the homologous structure of the hypothalamic arcuate nucleus in mammals. These results suggest that some of the selective Y1 and Y5 antagonists developed in mammals can be used to study appetite regulation in chicken.  相似文献   

15.
Fluorescently labelled NPY Y(1) receptor (Y(1)R) ligands were synthesized by connecting pyrylium and cyanine dyes with the argininamide-type Y(1)R antagonist core structure by linkers, covering a wide variety in length and chemical nature, attached to the guanidine group. The most promising fluorescent probes had Y(1)R affinities (radioligand binding) and antagonistic activities (calcium assay) in the one- to two-digit nanomolar range. These compounds turned out to be stable under assay conditions and to be appropriate for the detection of Y(1)Rs by confocal microscopy in live cells. To improve the signal-to-noise ratio by shifting the emission into the near infrared, a new benzothiazolium-type fluorescent cyanine dye (UR-DE99) was synthesized and attached to the parent antagonist via a carbamoyl linker yielding UR-MK131, a highly potent fluorescent Y(1)R probe, which was also successfully applied in flow cytometry.  相似文献   

16.
Food intake regulation in rodents: Y5 or Y1 NPY receptors or both?   总被引:3,自引:0,他引:3  
Neuropeptide Y (NPY), one of the most abundant peptides in rat and human brains, appears to act in the hypothalamus to stimulate feeding. It was first suggested that the NPY Y1 receptor (Y1R) was involved in feeding stimulated by NPY. More recently a novel NPY receptor subtype (Y5R) was identified in rat and human as the NPY feeding receptor subtype. There is, however, no absolute consensus since selective Y1R antagonists also antagonize NPY-induced hyperphagia. Nevertheless, new anti-obesity drugs may emerge from further pharmacological characterization of the NPY receptors and their antagonists. A large panel of Y1R and Y5R antagonists (such as CGP71683A, BIBO3304, BIBP3226, 1229U91, and SYNAPTIC and BANYU derivatives but also patentable in-house-synthesized compounds) have been evaluated through in vitro and in vivo tests in an attempt to establish a predictive relationship between the binding selectivity for human receptors, the potency in isolated organs assays, and the inhibitory effect on food intake in both normal and obese hyperphagic rodents. Although these results do not allow one to conclude on the implication of a single receptor subtype at the molecular level, this approach is crucial for the design of novel NPY receptor antagonists with potential use as anti-obesity drugs and for evaluation of their possible adverse peripheral side effects, such as hypotension.  相似文献   

17.
A series of benzimidazoles (4) was synthesized and evaluated in vitro as potent and selective NPY Y1 receptor antagonists. Substitution of the piperidine nitrogen of 4 with appropriate R groups resulted in compounds with more than 80-fold higher affinity at the Y receptor compared to the parent compound 5 (R = H). The most potent benzimidazole in this series was 21 (Ki = 0.052 nM).  相似文献   

18.
In this in vitro study, we investigated the influence of neuropeptide Y (NPY) Y1 receptor activation or inhibition on the viability of cultured neuronal or glial cells following oxygen glucose deprivation (OGD). Viability of cultured cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. When compared to the vehicle-treated control group, treatment with NPY or [Leu31,Pro34]-NPY (Y1 agonist) reduced viability of cultured SK-N-MC (Y1-expressing) human neuronal cells at 24 h after 1 h of OGD, while BIBP3226 (Y1 antagonist) improved viability. Except at the highest concentration of NPY used in the study, treatment with NPY or NPY3-36 (Y2 agonist) did not influence viability of cultured SH-SY5Y (Y2-expressing) human neuronal cells at 24 h after 1 h of OGD. In addition, treatment with NPY, [Leu31,Pro34]-NPY, NPY3-36, or BIBP3226 did not affect viability of cultured primary astrocytes at 24 h after 4 h of OGD. The present results agree with those of a recent in vivo study. Activation of NPY-Y1 receptors may mediate ischemic pathophysiological processes, and inhibiting the Y1 receptors may be protective. The combination of OGD and cultured neuronal cells may be useful in future studies on the neuroprotective and harmful mechanisms of NPY-Y1 receptor inhibition and activation during ischemia, respectively.  相似文献   

19.
Analogues of BIBP 3226, (R)-N(alpha)-diphenylacetyl-N-(4-hydroxybenzyl)argininamide, were synthesized and investigated for Y1 antagonism (Ca2+-assay, HEL cells) and binding on Y1, Y2 and Y5 receptors. Replacing the benzylamino by a tetrahydrobenzazepinyl group preserves most of the Y1 activity. Combination with a N(G)-phenylpropyl arginine and a N(alpha)-p-biphenylylacetyl moiety shifted the NPY receptor selectivity towards Y5.  相似文献   

20.
A series of small molecules based on a chemotype identified from our compound collection were synthesized and tested for binding affinity (IC(50)) at the human Neuropeptide Y Y(2) receptor (NPY Y(2)). Six of the 23 analogs tested possessed an NPY Y(2) IC(50) ≤ 15 nM. One member of this series, JNJ 31020028, is a selective, high affinity, receptor antagonist existing as a racemic mixture. As such a synthetic route to the desired enantiomer was designed starting from commercially available (S)-(+)-mandelic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号