首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Transforming growth factors beta (TGF-betas) are multifunctional cytokines that modulate cell growth, differentiation and apoptosis. Numerous effects initiated by TGF-betas in vitro have been described, but the role of TGF-beta targeting and activation under physiological conditions has gained very little attention and understanding. We report here that apoptosis of human umbilical vein endothelial cells (HUVECs) is accompanied by release of truncated large latent TGF-beta complexes from the pericellular matrix followed by activation of TGF-beta. The activation of TGF-beta during apoptosis was accompanied by enhanced secretion of beta1-LAP protein, and apoptotic HUVECs acquired the capacity to induce the release of latent TGF-beta-binding proteins (LTBPs) from extracellular matrices. Activated TGF-beta, in turn, attenuated apoptotic death of HUVECs. Current results indicate that the activation of TGF-beta accompanies the apoptosis of HUVECs, and may play a protective feedback role against apoptotic cell death. The results suggest a role for TGF-beta as a putative extracellular modulator of apoptosis.  相似文献   

2.
3.
The beta(1) integrin, functioning as a mechanoreceptor, senses a mechanical stimulus generated during collagen matrix contraction and down-regulates the phosphatidylinositol 3-kinase (PI3K)/Akt survival signal triggering apoptosis. The identities of integrin-associated signal molecules in the focal adhesion complex that are responsible for propagating beta(1) integrin viability signals in response to collagen matrix contraction are not known. Here we show that in response to collagen contraction focal adhesion kinase (FAK) is dephosphorylated. In contrast, enforced activation of beta(1) integrin by anti-beta(1) integrin antibody, which protects fibroblasts from apoptosis, preserves FAK phosphorylation. We demonstrate that ligation of beta(1) integrin by type I collagen or by enforced activation of beta(1) integrin by antibody promotes phosphorylation of FAK, p85 subunit of PI3K, and serine 473 of Akt. Wortmannin inhibited Akt but not FAK phosphorylation in response to enforced activation of beta(1) integrin by antibody. Blocking FAK by pharmacologic inhibition or by dominant negative FAK attenuated phosphorylation of p85 subunit of PI3K and Akt. Dominant negative FAK augmented fibroblast apoptosis during collagen contraction, and this was associated with diminished Akt activity. Constitutively active FAK augmented levels of p85 subunit of PI3K and Akt phosphorylation, and fibroblasts were protected from apoptosis. Our data identify a novel role for FAK, functioning upstream of PI3K/Akt, in transducing a beta(1) integrin viability signal in collagen matrices.  相似文献   

4.
A beta1 integrin phosphatidylinositol 3-kinase/Akt pathway regulates fibroblast survival in collagen matrices. When fibroblasts attach to collagen, Akt becomes phosphorylated, providing a survival signal. In contrast, in response to mechanical forces generated during collagen contraction, Akt is dephosphorylated and fibroblasts undergo apoptosis. The kinase(s) responsible for regulating Akt phosphorylation in response to matrix-derived mechanical signals are unclear. Integrin-linked kinase (ILK) is associated with the beta1 integrin in the focal adhesion complex and as such is a candidate kinase that may regulate Akt phosphorylation and fibroblast viability. Nevertheless, there is no direct evidence that matrix-derived mechanical forces regulate cell viability by modulating ILK activity. Here, we show that ILK activity decreased in response to collagen matrix contraction, which correlated with Akt dephosphorylation and induction of fibroblast apoptosis. In contrast, enforced activation of beta1 integrin by activating antibody preserved ILK and Akt activity during collagen matrix contraction, and this is associated with protection from collagen contraction-induced apoptosis. Knock-down of ILK by small, interfering RNA (siRNA) attenuated Akt phosphorylation in response to ligation of beta1 integrin by collagen or activating antibody and enhanced fibroblast apoptosis in response to collagen contraction. Kinase dead ILK attenuated Akt phosphorylation and enhanced fibroblast apoptosis, whereas hyperactive and wild type ILK augmented Akt phosphorylation and protected fibroblasts from apoptosis. Constitutively active Akt preserved Akt activity and rescued ILK siRNA-treated fibroblasts from collagen contraction-induced apoptosis. These data establish that matrix-derived mechanical forces sensed by beta1 integrin are capable of modulating ILK activity which regulates fibroblast viability via an Akt-dependent mechanism.  相似文献   

5.
Hepatic stellate cells are the major source of the extracellular matrix that accumulates in fibrotic liver. During progressive liver fibrosis, hepatic stellate cells proliferate, but during resolution of fibrosis there is extensive stellate cell apoptosis that coincides with degradation of the liver scar. We have examined the possibility that the fate of stellate cells is influenced by the extracellular matrix through the intermediary of alpha(v)beta(3) integrin. alpha(v)beta(3) integrin was expressed by activated, myofibroblastic rat and human stellate cells in culture. Antagonism of this integrin using neutralizing antibodies, echistatin, or small inhibitory RNA to silence alpha(v) subunit expression inhibited stellate cell proliferation and their expression of proliferating cell nuclear antigen and activated forms of p44 and p42 MAPK. These alpha(v)beta(3) antagonists also increased apoptosis of cultured stellate cells, and this was associated with an increase in the BAX/BCL-2 protein ratio, induction of nuclear DNA fragmentation, and activation of intracellular caspase-3. Expression of tissue inhibitor of metalloproteinases-1 by activated stellate cells was reduced by the alpha(v)beta(3) antagonists, while matrix metalloproteinase-9 synthesis was enhanced. Stellate cells incubated with active recombinant matrix metalloproteinase-9 showed enhanced apoptosis, while cells treated with a synthetic inhibitor of this protease showed increased survival. Our studies suggest that alpha(v)beta(3) integrin regulates the fate of hepatic stellate cells. Degradation of alpha(v)beta(3) ligands surrounding activated stellate cells during resolution of liver fibrosis might decrease alpha(v)beta(3) integrin ligation, suppressing stellate cell proliferation and inducing a fibrolytic, matrix metalloproteinase-secreting phenotype that may prime stellate cells for apoptosis.  相似文献   

6.
Integrins regulate cell viability through their interaction with the extracellular matrix. Integrins can sense mechanical forces arising from the matrix and convert these stimuli to chemical signals capable of modulating intracellular signal transduction. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is a major regulator of cell survival. It is not known, however, whether integrins, acting as mechanoreceptors, regulate cell survival via the PI3K/Akt pathway. Here, we show that in response to a matrix-derived mechanical stimulus, beta1 integrin regulated cell viability by regulating Akt activity in a PI3K-dependent fashion. To accomplish this, we employed fibroblasts cultured in collagen gels. During contraction of collagen matrices, fibroblasts underwent apoptosis. We demonstrate that ligation of beta1 integrin with anti-beta1 integrin antibodies protected fibroblasts from apoptosis. The nature of the survival signal activated by beta1 integrin engagement with antibody was mediated by PI3K acting through Akt/protein kinase B. We show that Akt phosphorylation decreased during collagen contraction and that this decrease correlated precisely with the onset of fibroblast apoptosis. Fibroblasts transfected with constitutively active PI3K displayed increased Akt phosphorylation and were protected from anoikis and collagen gel contraction-induced apoptosis. Our data identify a novel role for beta1 integrin in regulating fibroblast viability through a PI3K/Akt/protein kinase B signaling pathway in response to a matrix-derived mechanical stimulus.  相似文献   

7.
Interaction between integrin alphavbeta3 and extracellular matrix is crucial for endothelial cells sprouting from capillaries and for angiogenesis. Furthermore, integrin-mediated outside-in signals co-operate with growth factor receptors to promote cell proliferation and motility. To determine a potential regulation of angiogenic inducer receptors by the integrin system, we investigated the interaction between alphavbeta3 integrin and tyrosine kinase vascular endothelial growth factor receptor-2 (VEGFR-2) in human endothelial cells. We report that tyrosine-phosphorylated VEGFR-2 co-immunoprecipitated with beta3 integrin subunit, but not with beta1 or beta5, from cells stimulated with VEGF-A165. VEGFR-2 phosphorylation and mitogenicity induced by VEGF-A165 were enhanced in cells plated on the alphavbeta3 ligand, vitronectin, compared with cells plated on the alpha5beta1 ligand, fibronectin or the alpha2beta1 ligand, collagen. BV4 anti-beta3 integrin mAb, which does not interfere with endothelial cell adhesion to vitronectin, reduced (i) the tyrosine phosphorylation of VEGFR-2; (ii) the activation of downstream transductor phosphoinositide 3-OH kinase; and (iii) biological effects triggered by VEGF-A165. These results indicate a new role for alphavbeta3 integrin in the activation of an in vitro angiogenic program in endothelial cells. Besides being the most important survival system for nascent vessels by regulating cell adhesion to matrix, alphavbeta3 integrin participates in the full activation of VEGFR-2 triggered by VEGF-A, which is an important angiogenic inducer in tumors, inflammation and tissue regeneration.  相似文献   

8.
Jung KK  Liu XW  Chirco R  Fridman R  Kim HR 《The EMBO journal》2006,25(17):3934-3942
This study identified CD63, a member of the tetraspanin family, as a TIMP-1 interacting protein by yeast two-hybrid screening. Immunoprecipitation and confocal microscopic analysis confirmed CD63 interactions with TIMP-1, integrin beta1, and their co-localizations on the cell surface of human breast epithelial MCF10A cells. TIMP-1 expression correlated with the level of active integrin beta1 on the cell surface independent of cell adhesion. While MCF10A cells within a three-dimensional (3D) matrigel matrix form polarized acinar-like structures, TIMP-1 overexpression disrupted breast epithelial cell polarization and inhibited caspase-mediated apoptosis in centrally located cells, necessary for the formation and maintenance of the hollow acinar-like structures. Small hairpin RNA (shRNA)-mediated CD63 downregulation effectively reduced TIMP-1 binding to the cell surface, TIMP-1 co-localization with integrin beta1, and consequently reversed TIMP-1-mediated integrin beta1 activation, cell survival signaling and apoptosis inhibition. CD63 downregulation also restored polarization and apoptosis of TIMP-1 overexpressing MCF10A cells within a 3D-matrigel matrix. Taken together, the present study identified CD63 as a cell surface binding partner for TIMP-1, regulating cell survival and polarization via TIMP-1 modulation of tetraspanin/integrin signaling complex.  相似文献   

9.
Integrins are cell surface heterodimeric transmembrane receptors that, in addition to mediating cell adhesion to extracellular matrix proteins modulate cell survival. This mechanism may be exploited in cancer where evasion from apoptosis invariably contributes to cellular transformation. The molecular mechanisms responsible for matrix-induced survival signals begin to be elucidated. Here we report that the inhibitor of apoptosis survivin is expressed in vitro in human prostate cell lines with the highest levels present in aggressive prostate cancer cells such as PC3 and LNCaP-LN3 as well as in vivo in prostatic adenocarcinoma. We also show that interference with survivin in PC3 prostate cancer cells using a Cys84--> Ala dominant negative mutant or survivin antisense cDNA causes nuclear fragmentation, hypodiploidy, cleavage of a 32-kDa proform caspase-3 to active caspase-3, and proteolysis of the caspase substrate poly(ADP-ribose) polymerase. We demonstrate that in the aggressive PC3 cell line, adhesion to fibronectin via beta1 integrins results in up-regulation of survivin and protection from apoptosis induced by tumor necrosis factor-alpha (TNF-alpha). In contrast, survivin is not up-regulated by cell adhesion in the non-tumorigenic LNCaP cell line. Dominant negative survivin counteracts the ability of fibronectin to protect cells from undergoing apoptosis, whereas wild-type survivin protects non-adherent cells from TNF-alpha-induced apoptosis. Evidence is provided that expression of beta1A integrin is necessary to protect non-adherent cells transduced with survivin from TNF-alpha-induced apoptosis. In contrast, the beta1C integrin, which contains a variant cytoplasmic domain, is not able to prevent apoptosis induced by TNF-alpha in non-adherent cells transduced with survivin. Finally, we show that regulation of survivin levels by integrins are mediated by protein kinase B/AKT. These findings indicate that survivin is required to maintain a critical anti-apoptotic threshold in prostate cancer cells and identify integrin signaling as a crucial survival pathway against death receptor-mediated apoptosis.  相似文献   

10.
Endothelium extracellular matrix (ECM) interactions can provide distinct spatial and molecular signals which control cellular proliferation, migration, and differentiation. Here, we investigated the role of fibronectin (FN), a major ECM protein, on the functions of lymphatic endothelial cells (LEC). We observed that FN, the ligand for integrin alpha5beta1, selectively promoted the growth of LEC as compared with vitronectin (VN) in the presence of the ligand for vascular endothelial growth factor receptor 3 [VEGFR-3 (VEGF-C156S)]. Upon investigating the mechanisms whereby ECM components regulate VEGFR-3 signaling, we found that FN transactivated VEGFR-3 and significantly enhanced the phosphorylation of VEGFR-3 induced by VEGF-C156S as compared to VN. An enhanced association of the integrin subunit alpha5 or beta1 with VEGFR-3, after stimulation with VEGF-C156S, was observed by co-immunoprecipitation. While blockade of integrin alpha5beta1 inhibited the VEGF-C156S-induced phosphorylation of VEGFR-3, no similar effect was obtained by blocking integrin alphavbeta3. FN also protected the endothelial cells from serum deprivation-induced apoptosis. Moreover, while the specific PI3 kinase inhibitor, LY294002, abolished this FN-mediated cell survival, the MAPK kinase inhibitor, PD98059, had no significant effect. Furthermore, a dominant-negative mutant of VEGFR-3 (G857R) reduced VEGF-C156S or FN-mediated cell survival, as well as the activities of PI3 kinase/Akt. Our results indicate that integrin alpha5beta1 participates in the activation of both VEGFR-3 and its downstream PI3 kinase/Akt signaling pathway, which is essential for FN-mediated lymphatic endothelial cell survival and proliferation.  相似文献   

11.
Epithelial cells must adhere to the extracellular matrix (ECM) for survival, as detachment from matrix triggers apoptosis or anoikis. Integrins are major mediators of adhesion between cells and ECM proteins, and transduce signals required for cell survival. Recent evidence suggests that integrin receptors are coupled to growth factor receptors in the regulation of multiple biological functions; however, mechanisms involved in coordinate regulation of cell survival are poorly understood and mediators responsible for anoikis have not been well characterized. Here, we identify the pro-apoptotic protein Bim as a critical mediator of anoikis in epithelial cells. Bim is strongly induced after cell detachment and downregulation of Bim expression by RNA interference (RNAi) inhibits anoikis. Detachment-induced expression of Bim requires a lack of beta(1)-integrin engagement, downregulation of EGF receptor (EGFR) expression and inhibition of Erk signalling. Overexpressed EGFR was uncoupled from integrin regulation, resulting in the maintenance of Erk activation in suspension, and a block in Bim expression and anoikis. Thus, Bim functions as a key sensor of integrin and growth factor signals to the Erk pathway, and loss of such coordinate regulation may contribute to tumour progression.  相似文献   

12.
Proper attachment to the extracellular matrix is essential for cell survival. Detachment from the extracellular matrix results in an apoptotic process termed anoikis. Anoikis induction in MCF-10A mammary epithelial cells is due not only to loss of survival signals following integrin disengagement, but also to consequent downregulation of epidermal growth factor (EGFR) and loss of EGFR-induced survival signals. Here we demonstrate that G(1)/S arrest by overexpression of the cyclin-dependent kinase inhibitors p16(INK4a), p21(Cip1), or p27(Kip1) or by treatment with mimosine or aphidicolin confers anoikis resistance in MCF-10A cells. G(1)/S arrest-mediated anoikis resistance involves suppression of the BH3-only protein Bim. Furthermore, in G(1)/S-arrested cells, Erk phosphorylation is maintained in suspension and is necessary for Bim suppression. Following G(1)/S arrest, known proteins upstream of Erk, including Raf and Mek, are not activated. However, retained Erk activation under conditions in which Raf and Mek activation is lost is observed, suggesting that G(1)/S arrest acts at the level of Erk dephosphorylation. Thus, anoikis resistance by G(1)/S arrest is mediated by a mechanism involving Bim suppression through maintenance of Erk activation. These results provide a novel link between cell cycle arrest and survival, and this mechanism could contribute to the survival of nonreplicating, dormant tumor cells that avert apoptosis during early stages of metastasis.  相似文献   

13.
Receptor-mediated cell-extracellular matrix (ECM) interactions are critical regulators of cell survival, and perturbing these signaling pathways can disrupt cellular differentiation and function in a variety of tissues, including the mammary gland. One such receptor is the cell surface-associated, long isoform of beta1,4-galactosyltransferase I (GalT I). Deletion of long GalT I leads to increased mammary ductal branching morphogenesis [Dev. Biol., 244 (2002) 114]. Here, we show that this expansion in the mammary epithelial (ME) cell compartment is accomplished through decreased apoptosis during pregnancy and involution. Decreased apoptosis during involution is concomitant with delayed alveolar collapse, persistent expression of the milk protein gene alpha-lactalbumin and delayed expression of genes associated with the tissue-remodeling phase of involution. Using 3-dimensional in vitro cultures, we show that the decrease in apoptosis is dependent on laminin 1, a ligand for surface GalT I, suggesting that surface GalT I negatively influences ECM-dependent cell survival, a novel function for an ECM receptor. In the best-studied examples, ECM promotes survival through integrin receptor-mediated activation of focal adhesion kinase (FAK). Aggregation of surface GalT I also activates FAK, therefore, we asked if FAK activation was altered in ME from long GalT I null mice. Activated FAK was appropriately localized to focal adhesions in long GalT I null ME. However, FAK activation was constitutively reduced 4.5-fold in long GalT I nulls relative to wild type. Expression of the integrin beta1 subunit was not affected by loss of long GalT I. Collectively, these results suggest that surface GalT I might negatively regulate ME cell survival by linking integrin-independent FAK activation to apoptotic rather than survival signaling events.  相似文献   

14.
Several studies have demonstrated that matrix metalloproteinases (MMPs) are cytotoxic. The responsible mechanisms, however, are not well understood. MMPs may promote cytotoxicity through their ability to disrupt or degrade matrix proteins that support cell survival, and MMPs may also cleave substrates to generate molecules that stimulate cell death. In addition, MMPs may themselves act on cell surface receptors that affect cell survival. Among such receptors is the alpha(2)beta(1) integrin, a complex that has previously been linked to leukocyte death. In the present study we show that human neurons express alpha(2)beta(1) and that pro-MMP-1 interacts with this integrin complex. We also show that stimulation of neuronal cultures with MMP-1 is associated with a rapid reduction in the phosphorylation of Akt, a kinase that can influence caspase activity and cell survival. Moreover, MMP-1-associated dephosphorylation of Akt is inhibited by a blocking antibody to the alpha(2) integrin, but not by batimastat, an inhibitor of MMP-1 enzymatic activity. Such dephosphorylation is also stimulated by a catalytic mutant of pro-MMP-1. Additional studies show that MMP-1 causes neuronal death, which is significantly diminished by both a general caspase inhibitor and anti-alpha(2) but not by batimastat. Together, these results suggest that MMP-1 can stimulate dephosphorylation of Akt and neuronal death through a non-proteolytic mechanism that involves changes in integrin signaling.  相似文献   

15.
16.
Secreted protein acidic and rich in cysteine (SPARC) is important for the normal growth and maintenance of the murine lens. SPARC-null animals develop cataracts associated with a derangement of the lens capsule basement membrane and alterations in lens fiber morphology. Cellular stress and disregulation of apoptotic pathways within lens epithelial cells (LEC) are linked to cataract formation. To identify molecular targets of SPARC that are linked to this disorder, we stressed wild-type (WT) and SPARC-null LEC by serum deprivation or exposure to tunicamycin. SPARC enhanced signaling by integrin-linked kinase (ILK), a serine/threonine kinase known to enhance cell survival in vitro. In response to stress, an ILK-dependent decrease in apoptosis was observed in WT relative to SPARCg-null LEC. Co-immunoprecipitation and cross-linking of cell lysates revealed enhanced levels of a SPARC-integrin beta1 complex during stress. Competition with monoclonal antibodies and peptides indicated that the copper binding domain of SPARC is required for SPARC-mediated response to stress. Inhibiting the binding and/or activity of ILK, integrin beta1, or SPARC resulted in increased apoptosis of stressed LEC. We conclude that SPARC protects cells from stress-induced apoptosis in vitro via an interaction with integrin beta1 heterodimers that enhances ILK activation and pro-survival activity.  相似文献   

17.
The matrix metalloproteinases (MMPs) are a family of structurally related metalloendopeptidases so named due to their propensity to target extracellular matrix (ECM) proteins. Accumulating evidence, however, suggests that these proteases cleave numerous non-ECM substrates including enzymes and cell surface receptors. MMPs may also bind to cell surface receptors, though such binding has typically been thought to mediate internalization and degradation of the bound protease. More recently, it has been shown that MMP-1 coimmunoprecipitates with the alpha2beta1 integrin, a receptor for collagen. This association may serve to localize the enzymatic activity of MMP-1 so that collagen is cleaved and cell migration is facilitated. In other studies, however, it has been shown that integrin engagement may be linked to the activation of signaling cascades including those mediated by Gialpha containing heterotrimers. As an example, alpha2beta1 can form a complex with CD47 that may associate with Gialpha. In the present study we have therefore investigated the possibility that MMP-1 may affect intracellular changes that are linked to the activation of a Gi protein-coupled receptor. We show that treatment of neural cells with MMP-1 is followed by a rapid reduction in cytosolic levels of cAMP. Moreover, MMP-1 potentiates proteinase activated receptor-1 (PAR-1) agonist-linked increases in intracellular calcium, an effect which is often observed when an agonist of a Gi protein-coupled receptor is administered in association with an agonist of a Gq coupled receptor. In addition, MMP-1 stimulates pertussis toxin sensitive release ofMMP-9 both from cultured neural cells and monocyte/macrophages. Together, these results suggest that MMP-1 signals through a pertussis toxin-sensitive G protein-coupled receptor.  相似文献   

18.
In the presence of a protein synthesis inhibitor, cycloheximide, tumor necrosis factor-alpha (TNF-alpha), interleukin 1-beta (IL-1beta), or lipopolysaccharide (LPS) induces human umbilical vein endothelial cells (HUVECs) to undergo apoptosis, suggesting that constitutive or inducible cytoprotective pathways are required for cell survival. We studied the correlation between nuclear factor-kappaB (NF-kappaB) activation and cell death induced by TNF-alpha, IL-1beta, or LPS. Adenovirus-mediated overexpression of a dominant-negative IkappaBalpha (inhibitor of kappaB) mutant blocked NF-kappaB activation by gel shift assay and blocked induction of vascular cell adhesion molecule-1 protein by TNF-alpha, IL-1beta, and LPS, a NF-kappaB-dependent response. In cells overexpressing the IkappaBalpha mutant, TNF-alpha induced cell death, whereas IL-1beta or LPS did not. We conclude that cell survival following TNF-alpha stimulation is NF-kappaB-dependent but that a constitutive or inducible NF-kappaB-independent pathway(s) protects IL-1beta- or LPS-treated HUVECs from cell death.  相似文献   

19.
The interaction of integrins with extracellular matrix is known to promote cell survival by inhibiting apoptotic signaling. In contrast, we demonstrate here that the alpha6beta4 integrin induces apoptosis in carcinoma cells by stimulating p53 function. Specifically, we show that expression of alpha6beta4 in carcinoma cells that lack this integrin stimulates an increase in the transactivating function of p53 as demonstrated by the ability of this integrin to up-regulate the expression of a p53-sensitive reporter gene as well as the endogenous p53 response gene, bax. In addition, we report that alpha6beta4 triggers apoptosis in carcinoma cells that express wild-type but not mutant p53 and that these alpha6beta4 functions are inhibited by a dominant negative p53 construct. Importantly, we provide a link between integrin signaling and p53 activation by demonstrating that the clustering of alpha6beta4 with a beta4 integrin-specific antibody promotes p53-dependent apoptosis in cells that express both alpha6beta4 and wild-type p53. These studies are the first to demonstrate that a specific integrin can promote apoptosis by activating p53. Moreover, given the ability of alpha6beta4 to stimulate invasion (Shaw, L. M., Rabinovitz, I., Wang, H. F., Toker, A., and Mercurio, A. M. (1997) Cell 91, 949-960), these studies suggest that the ability of alpha6beta4 to promote carcinoma progression will be enhanced in tumor cells that express mutant, inactive forms of p53.  相似文献   

20.
We recently showed that extracellular matrix (ECM) proteins, which are abundant in desmoplastic pancreatic tumor, are as potent as growth factors in inhibiting apoptosis in pancreatic cancer (PaCa) cells. Here we show that fibronectin, a major ECM component, engages insulin-like growth factor-I receptor (IGF-IR) to inhibit PaCa cell death. We found that fibronectin-induced protection from apoptosis is fully mediated by IGF-IR and is independent of IGF-I. Pharmacologic and molecular inhibitions of IGF-IR stimulated apoptosis and prevented the prosurvival effect of fibronectin in PaCa cells. Our data indicate that fibronectin protects from apoptosis through trans-activation of IGF-IR. We showed that fibronectin stimulated complex formation between its receptor beta3 integrin and protein-tyrosine phosphatase SHP-2. This process of complex formation, in turn, prevents SHP-2 from dephosphorylating IGF-IR resulting in sustained phosphorylation of IGF-IR and leading to the downstream activation of Akt kinase, up-regulation of antiapoptotic Bcl(xL), and inhibition of apoptosis. Among ECM proteins tested only fibronectin and laminin but not vitronectin and collagen I stimulated trans-activation of IGF-IR. Interaction of fibronectin with beta3 but not beta1 integrin receptors mediates the survival pathway. In contrast, fibronectin-induced adhesion is mediated through beta1 integrin receptor and is IGF-IR-independent. Thus, our results indicate that the prosurvival effect of fibronectin in PaCa cells is mediated by trans-activation of IGF-IR induced by the beta3 integrin receptor. The data suggest IGF-IR as a key target for prevention of the prosurvival effects of ECM proteins and growth factors in pancreatic cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号