首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the sequential expression and cellular localization of cyclin B1 was examined in two-cell mouse embryos to elucidate the mechanism of the two-cell block. One-cell embryos derived from in vitro fertilization were cultured with oviductal tissue (nonblocking condition) or without oviductal tissue (blocking condition) to establish the experimental conditions in which the embryos either overcome the two-cell block or do not. The amount of cyclin B1 gradually increased through the second cell cycle (through S to G2 phase). However, the difference was not observed between culture conditions. This showed that even embryos exhibiting the two-cell block normally synthesize cyclin B1 through the cell cycle. Cyclin B1 in embryos cultured under nonblocking condition accumulates in the nucleus during the transition from the G2 to the M phase, whereas that in embryos cultured in blocking condition localizes in the cytoplasm throughout the cell cycle. These data indicate that two-cell embryos cultured in blocking condition are able to normally synthesize cyclin B1 but have defects in nuclear accumulation of the protein. However, when two-cell blocked embryos were treated with okadaic acid, an activator of Cdc2 kinase, part of cyclin B1 in the embryos translocated into the nucleus. Moreover, treatment with butyrolactone I, a specific inhibitor of Cdc2 kinase, inhibits nuclear translocation of cyclin B1 in those embryos. These results suggest that Cdc2 kinase regulates the nuclear accumulation of cyclin B1 in mouse two-cell embryos.  相似文献   

2.
DNA double-strand breaks (DSBs) are caused by various environmental stresses, such as ionizing radiation and DNA-damaging agents. When DSBs occur, cell cycle checkpoint mechanisms function to stop the cell cycle until all DSBs are repaired; the phosphorylation of H2AX plays an important role in this process. Mouse preimplantation-stage embryos are hypersensitive to ionizing radiation, and X-irradiated mouse zygotes are arrested at the G2 phase of the first cell cycle. To investigate the mechanisms responding to DNA damage at G2 in mouse preimplantation embryos, we examined G2/M checkpoint and DNA repair mechanisms in these embryos. Most of the one- and two-cell embryos in which DSBs had been induced by gamma-irradiation underwent a delay in cleavage and ceased development before the blastocyst stage. In these embryos, phosphorylated H2AX (gamma-H2AX) was not detected in the one- or two-cell stages by immunocytochemistry, although it was detected after the two-cell stage during preimplantation development. These results suggest that the G2/M checkpoint and DNA repair mechanisms have insufficient function in one- and two-cell embryos, causing hypersensitivity to gamma-irradiation. In addition, phosphorylated ataxia telangiectasia mutated protein and DNA protein kinase catalytic subunits, which phosphorylate H2AX, were detected in the embryos at one- and two-cell stages, as well as at other preimplantation stages, suggesting that the absence of gamma-H2AX in one- and two-cell embryos depends on some factor(s) other than these kinases.  相似文献   

3.
In mouse macrophage cells, the increase of the intracellular cAMP level activates protein kinase A (PKA) and results in inhibition of cell cycle progression in both G1 and G2/M phases. G1 arrest is mediated by a cdk inhibitor, p27Kip1, which prevents G1 cyclin/cdk complexes from being activated in response to colony stimulating factor-1, whereas inhibition of G2/M progression has not been fully elucidated. In this report we analyzed the effect of cAMP on G2/M progression in a mouse macrophage cell line, BAC1.2F5A. Flow cytometric analysis and mitotic index measurement using both synchronized and asynchronized cells revealed that addition of cAMP-elevating agents (8-bromoadenosine 3':5'-cyclic monophosphate and 3-isobutyl-methyl-xanthine), although they did not affect S phase progression or M/G1 transition, temporarily arrested cells in G2 but eventually the cells proceeded to M phase, resulting in about 4 hours delay of G2 progression. Timing of cyclin B1/Cdc2 kinase activation was also retarded by about 4 hours, which was accompanied by inhibition of efficient accumulation of cyclin B1 proteins. Initial induction and accumulation of cyclin B1 mRNA were not hampered, but the half life of cyclin B1 proteins was significantly shorter during G2 phase in the presence of cAMP-elevating agents compared with that of the cells blocked from progressing through M phase by nocodazole. These results imply that the cAMP/PKA pathway regulates G2 phase progression by altering the stability of a crucial cell cycle regulator.  相似文献   

4.
为探讨小鼠细胞分裂周期25B(CDC25B)蛋白149位丝氨酸磷酸化状态对小鼠1 细胞期受精卵中CDC25B的亚细胞定位和发育的影响,应用定制的CDC25B-pS149位的 磷酸化和非磷酸化抗体检测小鼠1-细胞期受精卵各细胞时期的磷酸化和非磷酸化状 态;应用免疫荧光观察各期受精卵中CDC25B蛋白的定位情况;将质粒pEGFP-CDC25B -WT、pEGFP-CDC25B-S149A和pEGFP-CDC25B-S149D融合质粒及空载体质粒显微注射入 G1期受精卵中,观察不同显微注射组小鼠1-细胞期受精卵中外源性CDC25B蛋白亚细 胞定位.结果显示,CDC25B-S149位丝氨酸在G1和S期被磷酸化,在G2和M期去磷酸化 .1-细胞期受精卵从G2向M期的转换过程中,发生了CDC25B向细胞核区的移位,到2- 细胞初期,部分CDC25B蛋白又从细胞核回到细胞浆.实验结果提示,小鼠1-细胞期受精卵G2/M期转换过程中,CDC25B 的S149位点磷酸化修饰可能是对CDC25B细胞内定 位及其活性的精确调节方式.  相似文献   

5.
M phase or maturation promoting factor (MPF), a kinase complex composed of the regulatory cyclin B and the catalytic p34cdc2 kinase, plays important roles in meiosis and mitosis. This study was designed to detect and compare the subcellular localization of cyclin B1, phosphorylated cyclin B1 and p34cdc2 during oocyte meiotic maturation and fertilization in mouse. We found that all these proteins were concentrated in the germinal vesicle of oocytes. Shortly after germinal vesicle breakdown, all these proteins were accumulated around the condensed chromosomes. With spindle formation at metaphase I, cyclin B1 and phosphorylated cyclin B1 were localized around the condensed chromosomes and concentrated at the spindle poles, while p34cdc2 was localized in the spindle region. At the anaphase/telophase transition, phosphorylated cyclin B1 was accumulated in the midbody between the separating chromosomes/chromatids, while p34cdc2 was accumulated in the entire spindle except for the midbody region. At metaphase II, both cyclin B1 and p34cdc2 were horizontally localized in the region with the aligned chromosomes and the two poles of the spindle, while phosphorylated cyclin B1 was localized in the two poles of spindle and the chromosomes. We could not detect a particular distribution of cyclin B1 in fertilized eggs when the pronuclei were initially formed, but in late pronuclei cyclin B1 was accumulated in the pronuclei. p34cdc2 and phosphorylated cyclin B1 were always concentrated in one pronucleus after parthenogenetic activation or in two pronuclei after fertilization. At metaphase of 1-cell embryos, cyclin B1 was accumulated around the condensed chromosomes. Cyclin B1 was accumulated in the nucleus of late 2-cell embryos but not in early 2-cell embryos. Furthermore, we also detected the accumulation of p34cdc2 in the nucleus of 2- and 4-cell embryos. All these results show that cyclin B1, phosphorylated cyclin B1 and p34cdc2 have similar distributions at some stages but different localizations at other stages during oocyte meiotic maturation and fertilization, suggesting that they may play a common role in some events but different roles in other events during oocyte maturation and fertilization.  相似文献   

6.
7.
8.
Mouse 2-, 4-, 8-, and 16-cell embryos were exposed to nocodazole in M16 culture medium. The effect of different concentrations and exposure times on the efficiency of cell cycle synchronization and the development of the treated embyros after release from the drug was determined. The minimum effective concentration (95% of arrested nuclei) for 4-, 8-, and 16-cell embryos was 5μM nocodazole. The effect upon subsequent development of mouse embryos depended upon both the stage of development of the embryo at treatment (P < 0.001) and the length of exposure to nocodazole (P < 0.001). Exposure to any concentration of nocodazole within the range 2.5–10 μM for 12 hr caused a reduction in the proportion of embryos that formed blastocysts. As the period of exposure to 5μM nocodazole increased from 12 to 24 hr, the proportion of embryos developing to the blastocyst stage decreased. The lower proportion of embyros developing to the blastocyst stage and to term (P < 0.01) suggests that the more advanced stages were more susceptible to damage as a result of exposure to nocodazole. The rate of development of 4-cell embryos to blastocysts was not affected when an exposure time of 9 hr was used. Together these results show that it is possible to use nocodazole to arrest mouse embryonic cells in mitosis but that it is not appropriate to culture the embryos in the presence of this drug for prolonged periods. Individual blastomeres completed mitosis at 60–90 min and started DNA synthesis at 120–150 min after release from nocodazole. Nuclei from blastomeres thus synchronized were used to conduct studies on the effect of the cell cycle on nuclear transfer. A signficant effect was found. When nuclei from 8-cell embryos in G1 or S-phase were used as nuclei donors, development to blastocyst was respectively 27% and none. ©Wiley-Liss, Inc.  相似文献   

9.
M K Kitay  D T Rowe 《Journal of virology》1996,70(11):7885-7893
EBNA-LP is a viral nuclear oncoprotein implicated in the immortalization of B lymphocytes by Epstein-Barr virus. An analysis of EBNA-LP migration on polyacrylamide gels was performed with protein derived from the X50-7 lymphoblastoid cell line blocked by hydroxyurea or aphidicolin at the G1/S phase of the cell cycle or by nocodazole at the G2/M phase. More slowly migrating species of EBNA-LP were detected in G2/M phase-arrested cell extracts. Release from nocodazole G2/M block or treatment with phosphatase caused the more slowly migrating species of EBNA-LP to disappear. Analyses of 32PO(4)(3-)-labeled EBNA-LP protein immunoprecipitated from the drug-synchronized cells showed that phosphorylated EBNA-LP was present throughout the cell cycle but that phosphorylation increased in G2 and was maximal at G2/M. Phosphoamino acid analysis revealed that all phosphorylation was on serine residues only. The ability of EBNA-LP to be phosphorylated by p34(cdc2) kinase and casein kinase II exclusively on serines implicates these enzymes as being potentially involved in EBNA-LP phosphorylation.  相似文献   

10.
Akt is a key downstream effector of the PI3K signaling pathway and plays a role in cell growth and survival. Expression of a myristoylated constitutively active form of Akt (myr-Akt) in PC12 cells could override cell-growth arrest at G2/M phase and apoptosis that were induced by etoposide treatment. On the other hand, inactivation of Akt by expression of its dominant negative mutant form (km-Akt) inhibited cell proliferation by arresting the cells at G2/M phase. Expression of myr-Akt also led to an increase in the protein and mRNA levels of CDK1 and cyclin B1. Furthermore, EMSA data revealed that expression of myr-Akt promoted the binding of NF-Y to the consensus CCAAT promoter sequence, whereas expression of km-Akt almost completely abolished it. Moreover, the Akt activity was minimal in the cells that were arrested at G2/M phase by nocodazole treatment, but reached to a maximal level as the cells progressed to mitosis and G1 phase upon removal of the drug. Treatment with Akt inhibitors, but not with those of MEK or p70S6K, blocked the release of the cells from the nocodazole-induced G2/M arrest, further revealing that the Akt activity is required for G2/M phase transition. These results suggest that Akt facilitate cell-cycle progression at G2/M phase in PC12 cells and this Akt activity is correlated with upregulation of NF-Y DNA-binding activity and cyclin B1/CDK1 gene expression.  相似文献   

11.
Incorporation of [3H]thymidine at different concentrations into mouse embryos at early developmental stages was determined by autoradiography. Methods to synchronise the G1-phase of mouse 2- and 4-cell embryos were also investigated. The results showed that the ability of embryos to incorporate [3H]thymidine increased with development. Embryos at the 4-cell stage were not labelled when the concentration of [3H]thymidine was lower than 5 microCi/ml, whereas the nuclei of embryos at morula and blastocyst stages began to show silver grains at a concentration of 0.1 microCi/ml of [3H]thymidine. After 2- and 4-cell mouse embryos were synchronised at the onset of G1-phase by treatment with low temperature or nocodazole, and DNA synthesis was detected by autoradiography, the duration of G1-phase was estimated. The result showed that 43% of the 2-cell embryos had a G1-phase of < or = 1 h, 22% had a G1-phase of < or = 2 h, 22% had a G1-phase of < or = 3 h and 13% had a G1-phase of < or = 4 h. The G1-phase in 85% of the 4-cell embryos was < or = 3 h, that in 8% of embryos was < or = 4 h and that in 7% of embryos was < or = 5 h. The toxicity of nocodazole on mouse embryo development was assessed based on both blastocyst formation and the number of blastomeres, and the results indicated that the effect of nocodazole on embryo development and cell cycle block was dose-dependent. The minimum concentration of nocodazole for metaphase block of mouse late 2-cell embryos was 0.05 microM, and the appropriate concentrations which did not impair development were 0.05-0.5 microM.  相似文献   

12.
γH2AX焦点(foci)被普遍当做DNA双链断裂(DSB)损伤的分子标志物.为探 讨细胞周期进程相关的H2AX磷酸化规律特征,采用胸腺嘧啶双阻滞结合噻氨酯哒唑(nocodazole)的后续处理,将HeLa细胞同步于有丝分裂的前中期.然后,用流式细胞仪检测细胞周期、Western印迹和免疫荧光法,观察γH2AX表达和γH2AX焦点的形成.结果显示,细胞进入G2/M期和有丝分裂过程中,γH2AX水平显著增加 ;在无DNA DSB发生的情况下,部分M期细胞中也存在大量的γH2AX焦点.随着细 胞完成有丝分裂从M期退出再进入G1期,γH2AX的表达水平逐渐降低.这种 γH2AX表达变化特征与G2/M期密切关联的PLK1和Cyclin B1的表达规律相类似. 在4 Gy大剂量照射下,HeLa细胞于照后8 到12 h出现明显的G2/M期阻滞.γH2AX 焦点数在照后1 h达高峰,随后降低,照后8 h又上升,出现了第2个峰值.与之不同的是,在1 Gy低剂量照射下,细胞的G2/M期阻滞微弱,γH2AX焦点数在照后 0.5 h最高,随后下降,且无反弹,符合DNA DSB的修复动力学特征.因此,将γ H2AX当做DNA DSB分子标志物时,还需要考虑细胞周期变化的影响.γH2AX适合 作为1 Gy以下照射的DNA双链断裂损伤的分子标志.  相似文献   

13.
Little is known about the posttranslational control of the cyclin-dependent protein kinase (CDK) inhibitor p21. We describe here a transient phosphorylation of p21 in the G2/M phase. G2/M-phosphorylated p21 is short-lived relative to hypophosphorylated p21. p21 becomes nuclear during S phase, prior to its phosphorylation by CDK2. S126-phosphorylated cyclin B1 binds to T57-phosphorylated p21. Cdc2 kinase activation is delayed in p21-deficient cells due to delayed association between Cdc2 and cyclin B1. Cyclin B1-Cdc2 kinase activity and G2/M progression in p21-/- cells are restored after reexpression of wild-type but not T57A mutant p21. The cyclin B1 S126A mutant exhibits reduced Cdc2 binding and has low kinase activity. Phosphorylated p21 binds to cyclin B1 when Cdc2 is phosphorylated on Y15 and associates poorly with the complex. Dephosphorylation on Y15 and phosphorylation on T161 promotes Cdc2 binding to the p21-cyclin B1 complex, which becomes activated as a kinase. Thus, hyperphosphorylated p21 activates the Cdc2 kinase in the G2/M transition.  相似文献   

14.
In plants multiple A-type cyclins with distinct expression patterns have been isolated and classified into three subgroups (A1-A3), while in animal somatic cells a single type of cyclin A is required for cell-cycle regulation from the S to M phases. We studied the function of an A2-type cyclin from Medicago sativa (Medsa;cycA2) which, in contrast to animal and most plant A-type cyclins, was expressed in all phases of the cell cycle. Using synchronized alfalfa cell cultures and anti-Medsa;CycA2 polyclonal antibodies, we showed that while the mRNA level increased steadily from the late G1 to the G2-M phase, the protein level after a rapid increase in S-phase reached a plateau during the G2 phase. In the yeast two-hybrid system, the Medsa;CycA2 protein interacted with the PSTAIRE-motif-containing cyclin-dependent kinase Cdc2MsA and with the maize retinoblastoma protein. Unexpectedly, the CycA2-associated kinase activity was biphasic: a first activity peak occurred in the S phase while the major one occurred during the G2/M transition, with no apparent dependence upon the actual levels of the Medsa;CycA2 and Cdc2MsA proteins. Immunohistological localization of the cyclin A2 protein by immunofluorescence and immunogold labelling revealed the presence of Medsa;CycA2 in the nucleus of the interphase and prophase cells, while it was undetectable thereafter during mitosis. Together these data suggest that Medsa;CycA2 plays a role both in the S phase and at the G2/M transition.  相似文献   

15.
Mouse embryos of the ddY strain fertilized in vitro undergo the first cleavage to the 2-cell stage but not the second cleavage even 45 hr after insemination (2-cell block). We examined the phosphorylation state of p34cdc2 and histone H1 kinase activity in mouse 2-cell embryos to investigate the relationship of p34cdc2 with 2-cell block. In the first mitotic cell cycle, the amount of phosphorylated forms of p34cdc2, which were detected as the bands of retarded mobility on SDS-PAGE followed by immunoblotting with anti-p34cdc2 antibody, increased during interphase and abruptly decreased at M phase. Concomitant with this dephosphorylation, histone H1 kinase activity was increased. After the embryos cleaved to the 2-cell stage, the amounts of phosphorylated forms of p34cdc2 increased up to 33 hr after insemination. However, the activation of histone H1 kinase did not occur and the states of phosphorylation of p34cdc2 did not show any significant changes until 45 hr. In contrast, 2-cell embryos of B6C3F1 mice, which do not show a 2-cell block and develop normally to blastocysts in vitro, exhibit the dephosphorylation of p34cdc2 and an increase in histone H1 kinase activity between 31 and 45 hr after insemination. When the ddY mouse embryos arrested at the 2-cell stage were treated with okadaic acid, an inhibitor of protein phosphatases 1 and 2A, the dephosphorylation of p34cdc2 occurred and histone H1 kinase activity increased. The chromosomes of these embryos stained with 4',6'-diamidino-2-phenylindole revealed the initiation of condensation. These results suggest that 2-cell-blocked embryos contain enough p34cdc2 to induce mitotic events but the protein remains in a latent form.  相似文献   

16.
17.
The mammary cancer cell line CAMA-1 synchronized at the G1/S boundary by thymidine block or at the G1/M boundary by nocodazole was used to evaluate 1) the sensitivity of a specific cell cycle phase or phases to 17 beta-estradiol (E2), 2) the effect of E2 on cell cycle kinetics, and 3) the resultant E2 effect on cell proliferation. In synchronized G1/S cells, E2-induced 3H-thymidine uptake, which indicated a newly formed S population, was observed only when E2 was added during, but not after, thymidine synchronization. Synchronized G2/M cells, enriched by Percoll gradient centrifugation to approximately 90% mitotic cells, responded to E2 added immediately following selection; the total E2-treated population traversed the cycle faster and reached S phase approximately 4 hr earlier than cells not exposed to E2. When E2 was added during the last hour of synchronization (ie, at late G2 or G2/M), or for 1 hr during mitotic cell enrichment, a mixed response occurred: a small portion had an accelerated G1 exit, while the majority of cells behaved the same as controls not incubated with E2. When E2 addition was delayed until 2 hr, 7 hr, or 12 hr following cell selection, to allow many early G1 phase cells to miss E2 exposure, the response to E2 was again mixed. When E2 was added during the 16 hr of nocodazole synchronization, when cells were largely at S or possibly at early G2, it inhibited entry into S phase. The E2-induced increase or decrease of S phase cells in the nocodazole experiments also showed corresponding changes in mitotic index and cell number. These results showed that the early G1 phase and possibly the G2/M phase are sensitive to E2 stimulation, late G1, G1/S, or G2 are refractory; the E2 stimualtion of cell proliferation is due primarily to an increased proportion of G1 cells that traverse the cell cycle and a shortened G1 period, E2 does not facilitate faster cell division; and estrogen-induced cell proliferation or G1/S transition occurs only when very early G1 phase cells are exposed to estrogen. These results are consistent with the constant transition probability hypothesis, that is, E2 alters the probability of cells entering into DNA synthesis without significantly affecting the duration of other cell cycle phases. Results from this study provide new information for further studies aimed at elucidating E2-modulated G1 events related to tumor growth.  相似文献   

18.
BACKGROUND: In a previous work, we demonstrated with flow cytometry (FCM) methods that accumulation of human cyclin B1 in leukemic cell lines begins during the G(1) phase of the cell cycle (Viallard et al. , Exp Cell Res 247:208-219, 1999). In the present study, FCM was used to compare the localization and the kinetic patterns of cyclin B1 expression in Jurkat leukemia cell line and phytohemagglutinin (PHA)-stimulated normal T lymphocytes. METHODS: Cell synchronization was performed in G(1) with sodium n-butyrate, at the G(1)/S transition with thymidine and at mitosis with colchicine. Cells (leukemic cell line Jurkat or PHA-stimulated human T-lymphocytes) were stained for DNA and cyclin B1 and analyzed by FCM. Western blotting was used to confirm certain results. RESULTS: Under asynchronous growing conditions and for both cell populations, cyclin B1 expression was essentially restricted to the G(2)/M transition, reaching its maximal level at mitosis. When the cells were synchronized at the G(1)/S boundary by thymidine or inside the G(1) phase by sodium n-butyrate, Jurkat cells accumulated cyclin B1 in both situations, whereas T lymphocytes expressed cyclin B1 only during the thymidine block. The cyclin B1 fluorescence kinetics of PHA-stimulated T lymphocytes was strictly similar when considering T lymphocytes blocked at the G(1)/S phase transition by thymidine and in exponentially growing conditions. These FCM results were confirmed by Western blotting. The detection of cyclin B1 by Western blot in cells sorted in the G(1) phase of the cell cycle showed that cyclin B1 was present in the G(1) phase in leukemic T cells but not in normal T lymphocytes. Cyclin B1 degradation was effective at mitosis, thus ruling out a defective cyclin B1 proteolysis. CONCLUSIONS: We found that the leukemic T cells behaved quite differently from the untransformed T lymphocytes. Our data support the notion that human cyclin B1 is present in the G(1) phase of the cell cycle in leukemic T cells but not in normal T lymphocytes. Therefore, the restriction point from which cyclin B1 can be detected is different in the two models studied. We hypothesize that after passage through a restriction point differing in T lymphocytes and in leukemic cells, the rate of cyclin B1 synthesis becomes constant in the S and G(2)/M phases and independent from the DNA replication cycle.  相似文献   

19.
We have examined the reprogramming ability of donor fibroblast nuclei in various phases of the cell cycle, upon transfer to cytoplasts, using a bovine nuclear transfer (NT) model. Bovine fetal fibroblasts were cultured in reduced serum and conditioned medium to induce quiescence (G0) and treated with nocodazole to induce M phase arrest. Unsynchronized actively dividing cells (control) were mainly in G1. Cells synchronized in G0, M, and G1 phase were transferred to enucleated bovine MII oocytes by direct injection using the Piezo-Drill microinjector. NT oocytes were artificially activated following injection. Cells at the M phase were also transferred to enucleated oocytes after artificial activation. Cells induced into quiescence by serum starvation and unsynchronized donor cells produced the highest rates of development to the morula/blastocyst stage (20% and 18%, respectively). Development to blastocyst was significantly higher in parthenogenetic controls compared to NT embryos. The transfer of M phase nuclei to MII cytoplasts was not associated with high development to the blastocyst stage. Nevertheless, determining the viability of these embryos requires transfer to recipient animals and assessment of in vivo development.  相似文献   

20.
Very little is known about the metabolism of phospholipids in the G2 and M phases of the cell cycle, but limited studies have led to the postulation that phospholipid synthesis ceases during this period. To investigate whether phospholipids are synthesized in the G2/M phase of the cell cycle, protocols were developed to produce synchronized MCF-7 cell populations with greater than 80% of the cells in G1/S or G2/M phases that moved in synchrony following removal of the blocking agent. Analysis of the activities of key phosphatidylcholine and phosphatidylethanolamine biosynthetic enzymes in subcellular fractions obtained from MCF-7 cells at different cell cycle phases revealed that there was robust activity of key enzymes in the fractions prepared from MCF-7 cells in G2/M phase. Radiolabeled choline and ethanolamine were rapidly incorporated into cells maintained at G2/M phase with nocodazole, and the rates of incorporation were similar to those obtained in cells allowed to progress into the G1 phase. Furthermore, radiolabeled glycerol was incorporated into phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and phosphatidic acid in MCF-7 cells maintained at G2/M phase with nocodazole. Similar results were obtained in CHO cells. These results demonstrate that glycerophospholipid synthesis is very active in the G2/M phase of these cells. Therefore, the postulated cessation of phospholipid synthesis in G2/M phases is not applicable to all cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号