首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In C4 photosynthesis, phosphoenolpyruvate carboxylase (PEPC) is the enzyme responsible for catalyzing the primary fixation of atmospheric CO2. The activity of PEPC is regulated diurnally by reversible phosphorylation. PEPC kinase (PEPCk), a protein kinase involved in this phosphorylation, is highly specific for PEPC and consists of only the core domain of protein kinase. Owing to its extremely low abundance in cells, analysis of its regulatory mechanism at the protein level has been difficult. Here we employed a transient expression system using maize mesophyll protoplasts. The PEPCk protein with a FLAG tag could be expressed correctly and detected with high sensitivity. Rapid degradation of PEPCk protein was confirmed and shown to be blocked by MG132, a 26S proteasome inhibitor. Furthermore, MG132 enhanced accumulation of PEPCk with increased molecular sizes at about 8 kDa intervals. Using anti-ubiquitin antibody, this increase was shown to be due to ubiquitination. This is the first report to show the involvement of the ubiquitin-proteasome pathway in PEPCk turnover. The occurrence of PEPCks with higher molecular sizes, which was noted previously with cell extracts from various plants, was also suggested to be due to ubiquitination of native PEPCk.  相似文献   

3.
The synthesis of organic acids was studied during fruit development of two peach ( Prunus persica L. Batsch) cultivars, Fantasia and Jalousia, having fruits with high and low organic acid content, respectively. The malate content was higher in cv. Fantasia than in cv. Jalousia at the end of the first rapid growth stage (50 days after bloom [DAB]). Malate and citrate contents were higher in Fantasia than in Jalousia during the second rapid growth stage (from 100 DAB to maturity). The expression of phospho enol pyruvate carboxylase (PEPC, EC 4.1.1.31), which is involved in organic acid synthesis, was studied during peach fruit development. PEPC mRNA levels, and protein levels on a total soluble protein basis, peaked at 23 and 108 DAB in Fantasia. In Jalousia, they were very low at 23 DAB and reached levels similar to Fantasia at 108 DAB. For both cultivars, in vitro PEPC activity expressed on a dry weight basis was maximal at 24 DAB, decreased from 24 to 60 DAB, and then remained constant. The activity of peach fruit PEPC appeared extremely sensitive to malate (I0.5 of 100 μ M for Fantasia and 65 μ M for Jalousia at pH 7.3) and low pH. PEPC may participate in the control of organic acid accumulation during fruit development in the normal-acid fruit of Fantasia. However, mechanisms other than organic acid synthesis might account for the differences in acidity between normal-acid and non-acid peach fruit.  相似文献   

4.
Respiration and growth of tomato fruit   总被引:1,自引:0,他引:1  
The respiration rate and diameter expansion growth of young tomato fruit were measured simultaneously and related to changes in carbon import and plant water status. Respiration rate was directly proportional to the volume expansion rate of fruit growing on isolated plant tops at a positive water potential, whether the growth rate was changed by changing the fruit temperature or by manipulating the source:sink ratio of the plants. From the latter relationship, the maintenance respiration rate was estimated by extrapolation to zero growth and was found to be about 25% of the respiration rate of the average fruit at 21°C. Alternatively, when carbon import was prevented by heat-ringing the fruit peduncle, the respiration rate of the fruit declined to about 40% of the control rate and remained steady, while the expansion rate then declined steadily to >10% of the control rate. These results show that fruit expansion was not contributing significantly to fruit respiration. Indeed, large fluctuations in fruit expansion rate could also be induced by repeated darkening and illumination of potted plants without a corresponding change in fruit respiration. Most significantly, fruit expansion was considerably reduced when plants were allowed to wilt, hut there was no change in fruit respiration rate unless the fruit peduncle was subsequently heat-ringed. We conclude that a major part of the respiration of young tomato fruit was determined by the rate of carbon import, or associated processes, and that fruit expansion per se can occur with relatively low respiratory costs.  相似文献   

5.
6.
Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.  相似文献   

7.
Tomato fruit (Lycopersicum esculentum Mill) from green, pink, and red stages were assayed for changes in the activity of ribulose diphosphate carboxylase and oxygenase, phosphoenolpyruvate carboxylase, changes in the levels of glycolate and respiratory gas exchange. The ribulose diphosphate carboxylase activity decreased as the fruit ripened. By comparison, the ribulose diphosphate oxygenase activity increased during the transition from the green to the pink stage, and declined afterward. The changes in the endogenous glycolate levels and the respiratory gas exchange, as observed at different stages of ripening, resembled the changes in the ribulose diphosphate oxygenase activity. The utilization of glycolate in further metabolic activity may result in the formation of peroxidases required for the onset of ripening.  相似文献   

8.
Y P Chao  J C Liao 《Applied microbiology》1993,59(12):4261-4265
Phosphoenolpyruvate and oxaloacetate are key intermediates at the junction between catabolism and biosynthesis. Alteration of carbon flow at these branch points will affect the growth yield and the formation of products. We attempted to modulate the metabolic flow between phosphoenolpyruvate and oxaloacetate by overexpressing phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase from a multicopy plasmid under the control of the tac promoter. It was found that overexpression of phosphoenolpyruvate carboxylase decreased the rates of glucose consumption and organic acid excretion, but the growth and respiration rates remained unchanged. Consequently, the growth yield on glucose was improved. This result indicates that the wild-type level of phosphoenolpyruvate carboxylase is not optimal for the most efficient glucose utilization in batch cultures. On the other hand, overexpression of phosphoenolpyruvate carboxykinase increased glucose consumption and decreased oxygen consumption relative to those levels required for growth. Therefore, the growth yield on glucose was reduced because of a higher rate of fermentation product excretion. These data provide useful insights into the regulation of central metabolism and facilitate further manipulation of pathways for metabolite production.  相似文献   

9.
A sensitive, quantitative assay for phosphenolpyruvate carboxylase which utilizes microtiter plates is described. The assay depends upon the production of a colored compound in the reaction between oxaloacetate, the product of the phosphoenolpyruvate reaction, and the dye Fast Violet B. The method is particularly appropriate for monitoring chromatographic eluates and its utility for this purpose is demonstrated by the detection of phosphoenolpyruvate carboxylase in fractions of crude maize extract separated by size-exclusion chromatography.  相似文献   

10.
11.
DNA sequencing of a tomato ripening-related cDNA, TOM 92, revealed an open reading frame with homology to several pyridoxal 5-phosphate histidine decarboxylases, containing the conserved amino acid residues known to bind pyridoxal phosphate and -fluoromethylhistidine, an inhibitor of enzyme activity. TOM 92 mRNA accumulated during early fruit ripening and then declined. Fruit of the ripeningimpaired tomato mutant, ripening inhibitor (rin), did not accumulate TOM 92 mRNA, and its accumulation was not restored by treatment of fruit with ethylene. The TOM 92 mRNA was not detected in tomato leaves and unripe fruit.  相似文献   

12.
13.
Malate has been noted to be a `mixed' inhibitor of phosphoenolpyruvate (PEP) carboxylase. The competitive portion of this inhibition appears to be fairly constant regardless of the condition of the enzyme being measured, but the noncompetitive (V-type) inhibition is subject to variation depending on the source of the enzyme, its storage condition, the presence or absence of various ligands, and differences in pH. In the case of the maize (Zea mays L.) phosphoenolpyruvate carboxylase (PEPC), the V-type inhibition by malate is much less pronounced at pH 8 than at pH 7. Examination of the response of the maize PEPC to PEP concentration reveals a pronounced cooperativity at pH 8 which is not present at pH 7, and which results in the disappearance of the V-type inhibition at pH 8. The ability of high concentrations of PEP to convert PEPC from a form readily inhibited by malate to one resistant to malate inhibition has been previously demonstrated and we attribute the cooperativity shown at pH 8 to this response to high levels of PEP. Support for this proposal is provided by studies of the enzyme at pH 7 and pH 8 run in 20% glycerol. In this case there was no V-type inhibition of PEPC at either pH. Treatment with 20% glycerol has been shown to result in the aggregation of maize PEPC.  相似文献   

14.
Evolution of C4 phosphoenolpyruvate carboxylase   总被引:8,自引:0,他引:8  
C4 plants are known to be of polyphyletic origin and to have evolved independently several times during the evolution of angiosperms. This implies that the C4 isoform of phosphoenolpyruvate carboxylase (PEPC) originated from a nonphotosynthetic PEPC gene that was already present in the C3 ancestral species. To meet the special requirements of the C4 photosynthetic pathway the expression program of the C4 PEPC gene had to be changed to achieve a strong and selective expression in leaf mesophyll cells. In addition, the altered metabolite concentrations around C4 PEPC in the mesophyll cytoplasm necessitated changes in the enzyme's kinetic and regulatory properties. To obtain insight into the evolutionary steps involved in these altered enzyme characteristics, and even the order of these steps, the dicot genus Flaveria (Asteraceae) appears to be the experimental system of choice. Flaveria contains closely related C3, C3-C4, and C4 species that can be ordered by their gradual increase in C4 photosynthetic traits. The C4 PEPC of F. trinervia, which is encoded by the ppcA gene class, possesses typical kinetic and regulatory features of a C4-type PEPC. Its nearest neighbor is the orthologous ppcA gene of the C3 species F. pringlei. This latter gene encodes a typical nonphotosynthetic C3-type PEPC which is believed to be similar to the C3 ancestral PEPC. This pair of orthologous PEPCs has been used to map C4-specific molecular determinants for the kinetic and regulatory characteristics of C4 PEPCs. The most notable finding from these investigations was the identification of a C4 PEPC invariant site-specific mutation from alanine (C3) to serine (C4) at position 774 that was a necessary and late step in the evolution of C3 to C4 PEPC. The C3-C4 intermediate ppcA PEPCs are used to identify the sequence of events leading from a C3- to a C4-type PEPC.  相似文献   

15.
Water relations of the tomato during fruit growth   总被引:5,自引:5,他引:5  
Fruit and stem water potentials of tomato plants were measured continuously for several days using automated psychrometers. A linear voltage displacement transducer was used to simultaneously measure diameter changes on an adjacent fruit. A strong correlation was observed between the water potential gradient of the fruit and stem, and changes in fruit diameter. Fruit diameter increased when the apoplasmic water potential gradient favoured solution flow into the fruit and fruit shrinkage occurred only when the water potential gradient was inverted. Based on our data and other published data (Ehret & Ho 1986; Lee 1989a) on phloem transport in tomato, we have concluded that low stem water potentials have an immediate and direct effect on phloem turgor; reducing the driving force for sap flow into the fruit. Since fruit water potential remained relatively constant, the diurnal variation in stem water potential was sufficient to account for the correlation with changes in fruit diameter. There are consequences with respect to predicting the accumulation of dry matter in tomato fruit.  相似文献   

16.
Poly(A)-containing mRNA was purified from tomato fruits and translated in a wheat germ in vitro protein-synthesizing system. Comparison of the protein products produced in response to mRNA samples from unripe and ripening fruits provides evidence for changes in the amounts of mRNA coding for specific proteins during ripening.  相似文献   

17.
To investigate the relationship between fruit growth and fruit osmotic potential (Ψs) in salty conditions, a sensitive tomato cultivar (Lycopersicon esculentum Mill.) and a tolerant accession of the wild species Lycopersicon pimpinellifolium Mill. were grown in a greenhouse with 0 and 70 mM NaCl, and the growth of the fruit studied from 15 to 70 days after anthesis (DAA). L. pimpinellifolium did not reduce significantly fruit weight in salty conditions throughout the growth period, whereas L. esculentum fruit weights decreased significantly with salinity from 45 DAA. L. esculentum fruit fresh weight reductions resulted from both less dry matter and water accumulation, although the fruit water content was affected by salinity before the fruit weight. In both species, fruit osmotic potential (Ψs) decreased significantly with salinity during the rapid fruit growth phase, although the changes were different. Thus, fruits from L. pimpinellifolium salt treated plants showed a Ψs reduction at the beginning (15 DAA) twice as high as that found in L. esculentum. As the advanced growth stage (from 15 to 55 DAA), the Ψs reduction percentages induced by salinity were quite similar in L. pimpinellifolium fruits, while increased in L. esculentum. Under saline conditions, the solutes contributing to reduce the fruit Ψs during the first 55 DAA were the inorganic solutes in both species, while in the ripe fruits they were hexoses. L. esculentum fruits accumulated K+ as the main osmoticum in salty conditions, while L. pimpinellifolium fruits were able to use not only K+ but also the Na+ provided by the salt.  相似文献   

18.
A kinetic investigation of phosphoenolpyruvate carboxylase from Zea mays.   总被引:1,自引:0,他引:1  
J W Janc  M H O'Leary  W W Cleland 《Biochemistry》1992,31(28):6421-6426
The reaction catalyzed by phosphoenolpyruvate carboxylase from Zea mays has been studied kinetically. Results of initial velocity patterns and inhibition studies indicate that phosphoenolpyruvate carboxylase has a random sequential mechanism in which there is a high level of synergism in the binding of substrates. The preferred order of addition of reactants is Mg2+, phosphoenolpyruvate, and bicarbonate. The binding of Mg2+ is at equilibrium. Values for the various kinetic parameters are KiMg = 2.3 +/- 0.4 mM, KPEP = 3.6 +/- 0.6 mM, KiPEP = 0.2 +/- 0.07 mM, and Kbicarbonate = 0.18 +/- 0.04 mM. In addition, double inhibition experiments have been performed to examine the nature of the active site interactions with the putative intermediates, carboxy phosphate and the enolate of pyruvate. Highly synergistic inhibition of phosphoenolpyruvate carboxylase was observed in the presence of oxalate and carbamyl phosphate (alpha = 0.0013). However, an antisynergistic relationship exists between oxalate and phosphonoformate (alpha = 2.75).  相似文献   

19.
20.
S L Ausenhus  M H O'Leary 《Biochemistry》1992,31(28):6427-6431
In addition to the normal carboxylation reaction, phosphoenolpyruvate carboxylase from Zea mays catalyzes a HCO3(-)-dependent hydrolysis of phosphoenolpyruvate to pyruvate and Pi. Two independent methods were used to establish this reaction. First, the formation of pyruvate was coupled to lactate dehydrogenase in assay solutions containing high concentrations of L-glutamate and aspartate aminotransferase. Under these conditions, oxalacetic acid produced in the carboxylation reaction was efficiently transaminated, and decarboxylation to form spurious pyruvate was negligible. Second, sequential reduction of oxalacetate and pyruvate was achieved by initially running the reaction in the presence of malate dehydrogenase with NADH in excess over phosphoenolpyruvate. After the reaction was complete, lactate dehydrogenase was added, thus giving a measure of pyruvate concentration. At pH 8.0 in the presence of Mg2+, the rate of phosphoenolpyruvate hydrolysis was 3-7% of the total reaction rate. The hydrolysis reaction catalyzed by phosphoenolpyruvate carboxylase was strongly metal dependent, with rates decreasing in the order Ni2+ greater than Co2+ greater than Mn2+ greater than Mg2+ greater than Ca2+. These results suggest that the active site metal ion binds to the enolate oxygen, thus stabilizing the proposed enolate intermediate. The more stable the enolate, the less reactive it is toward carboxylation and the greater the opportunity for hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号