首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seven analogues of the bacterial osmoprotectant glycine betaine (GB, trimethylammonioacetate), in which the methyl groups of the Me3N+ moiety are replaced by various substituents, were obtained by SPOS using Wang resin. Their biological activities (osmoprotection vs toxicity), appeared closely related to their uptake efficiency and their catabolism in the betaine-demethylating model bacterium Sinorhizobium meliloti.  相似文献   

2.
Erwinia chrysanthemi insertion mutants were isolated that grew poorly specifically in the presence of glycine betaine (GB) or its analogues in high-salt media. Transposon insertions were found to affect the bspA gene, which forms an operon including the psd locus coding for phosphatidylserine decarboxylase. Initial GB uptake is not affected by the bspA mutation. However, in high-salt medium, its initial accumulation is followed by a reduced glucose uptake and a release of GB but not a loss of viability. BspA is homologous to the widespread MscS channel, YggB, but does not seem to constitute a mechanosensitive channel. We suggest that BspA is a protein sensing both intracellular GB and the extracellular salt content of the medium, the hypothesis being built on the observation that BspA is necessary to maintain the GB pool during osmoadaptation in high-salt media containing this osmoprotectant.  相似文献   

3.
Sorokin  D. Y. 《Microbiology》2021,90(5):569-577
Microbiology - Glycine betaine (GB) is a biologically important compound for microbial communities living in saline habitats most commonly employed as an organic osmolyte. At fluctuating salinity,...  相似文献   

4.
该研究以平邑甜茶[Malus hupehensis(Pamp.)Rehd.]2年生实生苗为材料,通过盆栽试验于干旱处理前3d分别连续喷施黄腐酸(FA)、甜菜碱(GB)和复配(FA+GB),并以清水为对照(CK)进行预处理,比较分析不同预处理对干旱胁迫下平邑甜茶的生理及光合特性变化,探讨FA和GB对平邑甜茶的抗旱生理机制。结果显示:(1)与对照相比,FA、GB和FA+GB预处理均能够显著提高平邑甜茶叶片相对含水量,且FA的保水性效果最佳。(2)3种预处理均可显著促进干旱胁迫下叶片可溶性蛋白、可溶性糖和脯氨酸含量增加,且FA+GB预处理后在干旱胁迫下叶片可溶性糖和脯氨酸累积量显著高于单施FA或GB。(3)3种预处理均可显著提高干旱胁迫下平邑甜茶幼苗的SOD、POD、CAT活性,并显著降低MDA的积累速度及其累积量,且以FA+GB预处理的MDA含量最低、抗氧化酶活性最高。(4)GB和FA+GB预处理下平邑甜茶的净光合速率、瞬时水分利用率显著高于CK和FA,且FA+GB处理下改善光合特性的效果最佳,GB次之。研究表明,单独喷施黄腐酸和甜菜碱及两者配施预处理均能够增加干旱胁迫下平邑甜茶的渗透调节物质和相对含水量,提高叶片的保水性,调节抗氧化物酶活性,降低丙二醛含量,增加细胞膜稳定性,改善光合性能,进而提高平邑甜茶的抗旱能力,且以复配喷施(FA+GB)预处理的效果最好。  相似文献   

5.
Betaine aldehyde dehydrogenase (BADH) is a major oxidative enzyme that converts betaine aldehyde to glycine betaine (GB), an osmoprotectant compound in plants. Japonica rice (salt-sensitive) was genetically engineered to enhance salt tolerance by introducing the OsBADH1 gene from Indica rice (salt-tolerant), which is a GB accumulator. We produced transgenic rice plants overexpressing the modified OsBADH1 gene under the control of the maize ubiquitin promoter. The transgenic rice showed increased OsBADH1 gene expression and OsBADH1 enzyme production, resulting in the accumulation of GB. It also exhibited enhanced salt tolerance in immature and mature transgenic rice seedlings. The adverse effect of salt stress on seed germination, the growth of immature and mature seedlings, water status, and photosynthetic pigments was alleviated in transgenic seedlings.  相似文献   

6.
The acclimation of a plant to a constantly changing environment involves the accumulation of certain organic compounds of low molecular mass, known collectively as compatible solutes, in the cytoplasm. The evidence from numerous investigations of the physiology, genetics, biophysics and biochemistry of plants strongly suggests that glycine betaine (GB), an amphoteric quaternary amine, plays an important role as a compatible solute in plants under various types of environmental stress, such as high levels of salts and low temperature. Plant species vary in their capacity to synthesize GB and some plants, such as spinach and barley, accumulate relatively high levels of GB in their chloroplasts while others, such as Arabidopsis and tobacco, do not synthesize this compound. Genetic engineering has allowed the introduction into GB-deficient species of biosynthetic pathways to GB from both micro-organisms and higher plants; this approach has facilitated investigations of the importance of GB in stress protection. In this review, we summarize recent progress in the genetic manipulation of the synthesis of GB, with special emphasis on the relationship between the protective effects of GB in vivo and those documented in vitro.  相似文献   

7.
BACKGROUND AND AIMS: Glycinebetaine (GB), a quaternary ammonium compound, is a very effective compatible solute. In higher plants, GB is synthesized from choline (Cho) via betaine aldehyde (BA). The first and second steps in the biosynthesis of GB are catalysed by choline monooxygenase (CMO) and by betaine aldehyde dehydrogenase (BADH), respectively. Rice (Oryza sativa), which has two genes for BADH, does not accumulate GB because it lacks a functional gene for CMO. Rice plants accumulate GB in the presence of exogenously applied BA, which leads to the development of a significant tolerance to salt, cold and heat stress. The goal in this study was to evaluate and to discuss the effects of endogenously accumulated GB in rice. METHODS: Transgenic rice plants that overexpressed a gene for CMO from spinach (Spinacia oleracea) were produced by Agrobacterium-mediated transformation. After Southern and western blotting analysis, GB in rice leaves was quantified by (1)H-NMR spectroscopy and the tolerance of GB-accumulating plants to abiotic stress was investigated. KEY RESULTS: Transgenic plants that had a single copy of the transgene and expressed spinach CMO accumulated GB at the level of 0.29-0.43 micromol g(-1) d. wt and had enhanced tolerance to salt stress and temperature stress in the seedling stage. CONCLUSIONS: In the CMO-expressing rice plants, the localization of spinach CMO and of endogenous BADHs might be different and/or the catalytic activity of spinach CMO in rice plants might be lower than it is in spinach. These possibilities might explain the low levels of GB in the transgenic rice plants. It was concluded that CMO-expressing rice plants were not effective for accumulation of GB and improvement of productivity.  相似文献   

8.
Considering both the protective effect of glycine betaine (GB) on enteric bacteria grown at high osmolarity and the possible presence of GB in marine sediments, we have analyzed the survival, in nutrient-free seawater, of Escherichia coli cells incubated in sediments supplemented with GB or not supplemented and measured the efficiency of GB uptake systems and the expression of proP and proU genes in both seawater and sediments. We did this by using strains harboring proP-lacZ and proU-lacZ operon or gene fusions. We found that the uptake of GB and the expression of both proP and proU were very weak in seawater. The survival ability of cells in seawater supplemented with GB was a linear function of GB concentration, although the overall protection by the osmolyte was low. In sediments, proP expression was weak and GB uptake and proU expression were variable, possibly depending on the availability of organic nutrients. In a sediment with a high total organic carbon content, GB uptake was very high and proU expression was enhanced; cells previously incubated in this sediment showed a higher resistance to decay in seawater. GB might therefore play a significant role in the long-term maintenance of enteric bacterial cells in some marine sediments.  相似文献   

9.
Considering both the protective effect of glycine betaine (GB) on enteric bacteria grown at high osmolarity and the possible presence of GB in marine sediments, we have analyzed the survival, in nutrient-free seawater, of Escherichia coli cells incubated in sediments supplemented with GB or not supplemented and measured the efficiency of GB uptake systems and the expression of proP and proU genes in both seawater and sediments. We did this by using strains harboring proP-lacZ and proU-lacZ operon or gene fusions. We found that the uptake of GB and the expression of both proP and proU were very weak in seawater. The survival ability of cells in seawater supplemented with GB was a linear function of GB concentration, although the overall protection by the osmolyte was low. In sediments, proP expression was weak and GB uptake and proU expression were variable, possibly depending on the availability of organic nutrients. In a sediment with a high total organic carbon content, GB uptake was very high and proU expression was enhanced; cells previously incubated in this sediment showed a higher resistance to decay in seawater. GB might therefore play a significant role in the long-term maintenance of enteric bacterial cells in some marine sediments.  相似文献   

10.
盐胁迫下三色苋甜菜碱及有关酶含量的变化   总被引:2,自引:0,他引:2  
三色苋(Amaranthus tricolor)不同器官中的甜菜碱(GB)含量显著不同.除子叶外,根、茎和叶的GB含量和茎、叶中的胆碱单加氧酶(CMO)含量都因300 mmol/L的NaCl处理而增加.甜菜碱醛脱氢酶(BADH)的表达无论盐处理与否在所有器官中都能检测到,其含量变化不大.当种子发芽时,具备合成GB的能力,CMO含量增加;在此之前未能检测到CMO,也不能合成GB.研究结果表明三色苋响应盐胁迫而合成GB的关键酶是CMO.  相似文献   

11.
A novel compound, 1-methyl-1-piperidino methane sulfonate (MPMS), was found to block the osmoprotectant activity of choline and L-proline, but not glycine betaine in Escherichia coli. MPMS was more active against salt-sensitive than salt-resistant strains, but had no effect on the salt tolerance of a mutant which was unable to transport choline, glycine betaine and proline. Growth of E. coli in NaCl was inhibited by MPMS and restored by glycine betaine, but not by choline or L-proline. Uptake of radiolabeled glycine betaine, choline or L-proline by cells grown at high osmolarity was not inhibited when MPMS and the radioactive substrates were added simultaneously. Preincubation for 5 min with MPMS reduced the uptake of choline and L-proline, but not glycine betaine. Similar incubation with MPMS had no effect on the uptake of radiolabeled glucose or succinate. The toxicity of MPMS was much lower than that of the L-proline analogues L-azetidine-2-carboxylic acid and 3,4-dehydro-DL-proline. The exact mechanism by which MPMS exerts its effect is not entirely clear. MPMS or a metabolite may interfere with the activity of several independent permeases involved in the uptake of osmoprotective compounds, or the conversion of choline to glycine betaine, or effect the expression of some of the osmoregulatory genes.Abbreviations MPMS 1-methyl-1-piperidino-methane sulfonate  相似文献   

12.
The accumulation of quaternary ammonium compounds in Lactobacillus plantarum is mediated via a single transport system with a high affinity for glycine betaine (apparent Km of 18 μM) and carnitine and a low affinity for proline (apparent Km of 950 μM) and other analogues. Mutants defective in the uptake of glycine betaine were generated by UV irradiation and selected on the basis of resistance to dehydroproline (DHP), a toxic proline analogue. Three independent DHP-resistant mutants showed reduced glycine betaine uptake rates and accumulation levels but behaved similarly to the wild type in terms of direct activation of uptake by high-osmolality conditions. Kinetic analysis of glycine betaine uptake and efflux in the wild-type and mutant cells is consistent with one uptake system for quaternary ammonium compounds in L. plantarum and a separate system(s) for their excretion. The mechanism of osmotic activation of the quaternary ammonium compound transport system (QacT) was studied. It was observed that the uptake rates were inhibited by the presence of internal substrate. Upon raising of the medium osmolality, the QacT system was rapidly activated (increase in maximal velocity) through a diminished inhibition by trans substrate as well as an effect that is independent of intracellular substrate. We also studied the effects of the cationic amphipath chlorpromazine, which inserts into the cytoplasmic membrane and thereby influences the uptake and efflux of glycine betaine. The results provide further evidence for the notion that the rapid efflux of glycine betaine upon osmotic downshock is mediated by a channel protein that is responding to membrane stretch or tension. The activation of QacT upon osmotic upshock seems to be brought about by a turgor-related parameter other than membrane stretch or tension.  相似文献   

13.
Plants are frequently exposed to a plethora of environmental stresses. Being sessile creatures, they have to tolerate any stresses by altering their metabolism. To achieve tolerance, plants synthesize compatible compounds such as glycine betaine (GB). Continuous research over the years has increased our understanding about the mechanisms of stress protection by GB, which range from an osmolyte to a chaperone and from maintenance of reactive oxygen species to gene expression inducer. Various crop plants have also been transformed to synthesize GB along with model plants by introducing bacterial or plant genes. The GB-synthesizing crop plants exhibit enhanced tolerance to various abiotic stresses and out-yield wild-type plants in stressful conditions. GB has also been utilized to improve enhanced stress tolerance by utilizing it in gene stacking experiments due to its synergistic and stabilizing effects. It is reviewed here (along with comparative analysis of GB synthesis pathways and its mechanism to improve tolerance) showing that gene stacking by using GB as one component provides substantial protection. This synergistic role of GB leads us to hypothesize that it can be utilized in virtually any kind of gene stacking experiments to develop crop plants to be grown in arable and marginal lands for better tolerance to ever-changing environmental conditions and to ensure food security in underdeveloped regions of the world.  相似文献   

14.
Abstract The metabolism of the methylated osmolytes glycine betaine (GB) and dimethylsulfoniopropionate (DMSP) was studied in a bacterium (strain MD 14–50) isolated from a colony of the cyanobacterium Trichodesmium . MD 14–50 when grown on DMSP cleaved dimethylsulfide (DMS) from DMSP and oxidized acrylate. In contrast to DMSP, GB was metabolized by sequential N-demethylations. Low concentrations (100 μM) of DMSP or GB allowed the growth of MD 14–50 on glucose at higher salinities than in their absence. At elevated salinities, DMSP was accumulated intracellularly with less catabolism and DMS production. Thus, DMSP and GB were catabolized by different mechanisms but functioned interchangeably as osmolytes.  相似文献   

15.
Compatible solutes play a decisive role in the defense of microorganisms against changes in temperature and increases in osmolarity in their natural habitats. In Bacillus subtilis, the substrate-binding protein (SBP)-dependent ABC-transporter OpuA serves for the uptake of the compatible solutes glycine betaine (GB) and proline betaine (PB). Here, we report the determinants of compatible solute binding by OpuAC, the SBP of the OpuA transporter, by equilibrium binding studies and X-ray crystallography. The affinity of OpuAC/GB and OpuAC/PB complexes were analyzed by intrinsic tryptophan fluorescence and the K(D) values were determined to be 17(+/-1)microM for GB and 295(+/-27)microM for PB, respectively. The structures of OpuAC in complex with GB or PB were solved at 2.0 A and 2.8 A, respectively, and show an SBP-typical class II fold. The ligand-binding pocket is formed by three tryptophan residues arranged in a prism-like geometry suitable to coordinate the positive charge of the trimethyl ammonium group of GB and the dimethyl ammonium group of PB by cation-pi interactions and by hydrogen bonds with the carboxylate moiety of the ligand. Structural differences between the OpuAC/GB and OpuAC/PB complexes occur within the ligand-binding pocket as well as across the domain-domain interface. These differences provide a structural framework to explain the drastic differences in affinity of the OpuAC/GB and OpuAC/PB complexes. A sequence comparison with putative SBP specific for compatible solutes reveals the presence of three distinct families for which the crystal structure of OpuAC might serve as a suitable template to predict the structures of these putative compatible solute-binding proteins.  相似文献   

16.
Glycine betaine is accumulated as a compatible solute in many photosynthetic and non-photosynthetic bacteria — the last being unable to synthesize the compound - and thus large pools of betaine can be expected to be present in hypersaline environments. A variety of aerobic and anaerobic microorganisms degrade betaine to among other products trimethylamine and methylamine, in a number of different pathways. Curiously, very few of these betaine breakdown processes have yet been identified in hypersaline environments. Trimethylamine can also be formed by bacterial reduction of trimethylamine N-oxide (also by extremely halophilic archaeobacteria). Degradation of trimethylamine in hypersaline environments by halophilic methanogenic bacteria is relatively well documented, and leads to the formation of methane, carbon dioxide and ammonia.  相似文献   

17.
Nineteen wheat genotypes were used to examine the effects of foliar applied glycine betaine (GB, 100 mM) on concentration of various osmolytes (such as proline, choline, GB and sucrose) under drought stress conditions. Drought stress caused a significant increase in proline content and GB content of wheat genotypes, both at maximum tillering and anthesis stages. Choline and sucrose were accumulated significantly at higher levels under stress conditions at both the stages. GB application increased the proline content and endogenous levels of GB in comparison to their stressed counterparts both at maximum tillering and anthesis stages but this increase was observed to be genotype specific. Furthermore, significant decrease in choline levels and sucrose contents of GB treated plants at anthesis stage and enhanced levels of proline questioned about involvement of GB in production of other osmolytes as well as stage specific response of wheat genotypes to GB spray. But these changes in osmolyte accumulation (OA) were not correlated with relative water content and stress tolerance index observed, under both GB sprayed and non-sprayed drought stressed conditions. So OA could not be considered as a selection criteria for drought tolerance in wheat.  相似文献   

18.
The discovery of new antimicrobial agents is extremely needed to overcome multidrug‐resistant bacterial and tuberculosis infections. In the present study, eight novel substituted urea derivatives ( 10a – 10h ) containing disulfide bond were designed, synthesized and screened for their in vitro antimicrobial activities on standard strains of Gram‐positive and Gram‐negative bacteria as well as on Mycobacterium tuberculosis. According to the obtained results, antibacterial effects of the compounds were found to be considerably better than their antimycobacterial activities along with their weak cytotoxic effects. Molecular docking studies were performed to gain insights into the antibacterial activity mechanism of the synthesized compounds. The interactions and the orientation of compound 10a (1,1′‐((disulfanediylbis(methylene))bis(2,1‐phenylene))bis(3‐phenylurea)) were found to be highly similar to the original ligand within the binding pocket E. faecalis β‐ketoacyl acyl carrier protein synthase III (FabH). Finally, a theoretical study was established to predict the physicochemical properties of the compounds.  相似文献   

19.
We combined the use of low inoculation titers (300 +/- 100 CFU/ml) and enumeration of culturable cells to measure the osmoprotective potentialities of dimethylsulfoniopropionate (DMSP), dimethylsulfonioacetate (DMSA), and glycine betaine (GB) for salt-stressed cultures of Escherichia coli. Dilute bacterial cultures were grown with osmoprotectant concentrations that encompassed the nanomolar levels of GB and DMSP found in nature and the millimolar levels of osmoprotectants used in standard laboratory osmoprotection bioassays. Nanomolar concentrations of DMSA, DMSP, and GB were sufficient to enhance the salinity tolerance of E. coli cells expressing only the ProU high-affinity general osmoporter. In contrast, nanomolar levels of osmoprotectants were ineffective with a mutant strain (GM50) that expressed only the low-affinity ProP osmoporter. Transport studies showed that DMSA and DMSP, like GB, were taken up via both ProU and ProP. Moreover, ProU displayed higher affinities for the three osmoprotectants than ProP displayed, and ProP, like ProU, displayed much higher affinities for GB and DMSA than for DMSP. Interestingly, ProP did not operate at substrate concentrations of 200 nM or less, whereas ProU operated at concentrations ranging from 1 nM to millimolar levels. Consequently, proU(+) strains of E. coli, but not the proP(+) strain GM50, could also scavenge nanomolar levels of GB, DMSA, and DMSP from oligotrophic seawater. The physiological and ecological implications of these observations are discussed.  相似文献   

20.
As part of our wider efforts to exploit novel mode of action antibacterials, we have discovered a series of cyclohexyl-amide compounds that has good Gram positive and Gram negative potency. The mechanism of action is via inhibition of bacterial topoisomerases II and IV. We have investigated various subunits in this series and report advanced studies on compound 7 which demonstrates good PK and in vivo efficacy properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号