首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The purpose of this study was to examine whether the ventilatory threshold (Thv) would give the maximal lactate steady state ([la]ss, max), which was defined as the highest work rate (W) attained by a subject without a progressive increase in blood lactate concentration [la]b at constant intensity exercise. Firstly, 8 healthy men repeated ramp-work tests (20 W.min-1) on an electrically braked cycle ergometer on different days. During the tests, alveolar gas exchange was measured breath-by-breath, and the W at Thv (WThv) was determined. The results of two-way ANOVA showed that the coefficient of variation of a single WThv determination was 2.6%. Secondly, 13 men performed 30-min exercise at WThv (Thv trial) and at 4.9% above WThv (Thv + trial), which corresponded to the 95% confidence interval of the single determination. The [la]b was measured at 15 and 30 min from the onset of exercise. The [la]b at 15 min (3.15 mmol.l-1, SEM 0.14) and at 30 min (2.95 mmol.l-1, SEM 0.18) were not significantly different in Thv trial. However, the [la]b of Thv + trial significantly increased (P less than 0.05) from 15 min (3.62 mmol.l-1, SEM 0.36) to 30 min (3.91 mmol.l-1, SEM 0.40). These results indicate that Thv gives the [la]ss, max, at which one can perform sustained exercise without continuous [la]b accumulation.  相似文献   

3.
This study investigates whether there are major gene effects on oxygen uptake at the ventilatory threshold (VO(2VT)) and the VO(2VT) maximal oxygen uptake (VT%VO(2 max)), at baseline and in response to 20 wk of exercise training by using data on 336 whites and 160 blacks. Segregation analysis was performed on the residuals of VO(2VT) and VT%VO(2 max). In whites, there was strong evidence of a major gene, with 3 and 2% of the sample in the upper distribution, that accounted for 52 and 43% of the variance in baseline VO(2VT) and VT%VO(2 max), respectively. There were no genotype-specific covariate effects (sex, age, weight, fat mass, and fat-free mass). The segregation results were inconclusive for the training response in whites, and for the baseline and training response in blacks, probably due to insufficient power because of reduced sample sizes or smaller gene effect or both. The strength of the genetic evidence for VO(2VT) and VT%VO(2 max) suggests that these traits should be further investigated for potential relations with specific candidate genes, if they can be identified, and explored through a genome-wide scan.  相似文献   

4.
1. Dogs were submitted to an aerobic training schedule and its maximum oxygen consumption, lactate threshold and lactate concentration during recovery were compared among the following conditions: not trained (UT), after 1 month of training (T1), after 2 months of training (T2) and after detraining (DT). 2. Maximum oxygen consumption increased significantly in relation to UT condition only at T2 condition. The detraining reversed this alteration. 3. Lactate threshold when expressed as Vo2 or absolute work load increased significantly after aerobic training (T2) but did not present any alteration when it was expressed as % of Vo2 max. 4. The lactate decreasing during recovery did not differ between the four experimental conditions (after 10 min). 5. The latency time for the lactate concentration to reach the top values was reduced by aerobic training (T2).  相似文献   

5.
The purpose of this study was to investigate the validity of non-invasive lactate threshold estimation using ventilatory and pulmonary gas exchange indices under condition of acute hypoxia. Seven untrained males (21.4+/-1.2 years) performed two incremental exercise tests using an electromagnetically braked cycle ergometer: one breathing room air and other breathing 12 % O2. The lactate threshold was estimated using the following parameters: increase of ventilatory equivalent for O2 (VE/VO2) without increase of ventilatory equivalent for CO2 (VE/VCO2). It was also determined from the increase in blood lactate and decrease in standard bicarbonate. The VE/VO2 and lactate increase methods yielded the respective values for lactate threshold: 1.91+/-0.10 l/min (for the VE/VO2) vs. 1.89+/-0.1 l/min (for the lactate). However, in hypoxic condition, VE/VO2 started to increase prior to the actual threshold as determined from blood lactate response: 1.67+/-0.1 l/min (for the lactate) vs. 1.37+/-0.09 l/min (for the VE/VO2) (P=0.0001), i.e. resulted in pseudo-threshold behavior. In conclusion, the ventilatory and gas exchange indices provide an accurate lactate threshold. Although the potential for pseudo-threshold behavior of the standard ventilatory and gas exchange indices of the lactate threshold must be concerned if an incremental test is performed under hypoxic conditions in which carotid body chemosensitivity is increased.  相似文献   

6.
To study the effects of previous submaximal exercise on the ventilatory determination of the Aerobic Threshold (AeT), 16 men were subjected to three maximal exercise tests (standard test = ST, retest = RT, and test with previous exercise = TPE ) on a cycle ergometer. The protocol for the three tests consisted of 3 min pedalling against 25 W, followed by increments of 25 W every minute until volitional fatigue. TPE was preceded by 10 min cycling at a power output corresponding to the AeT as determined in ST, followed by a recovery period pedalling against 25 W until VO2 returned to values consistent with the initial VO2 response to 25 W. AeT was determined from the gas exchange curves (ventilatory equivalent for O2, fraction of expired O2, excess of VCO2, ventilation, and respiratory gas exchange ratio) printed every 30 s. The results showed good ST X RT reliability (r = 0.89). TPE showed significantly higher AeT values (2.548 +/- 0.44 1 X min-1) when compared with ST (2.049 +/- 0.331 X min-1) and RT (2.083 +/- 0.30 1 X min-1). There were no significant differences for the sub-threshold respiratory gas exchange ratios among the trials. The sub-threshold VO2 response showed significantly higher values for TPE at power outputs above 50 W. It was concluded that the performance of previous exercise can increase the value for the ventilatory determination of the AeT due to a faster sub-threshold VO2 response.  相似文献   

7.
This investigation examined the relationship among plasma catecholamines, the blood lactate threshold (TLa), and the ventilatory threshold (TVE) in highly trained endurance athletes. Six competitive cyclists and six varsity cross-country runners performed a graded exercise test via two different modalities: treadmill running and bicycle ergometry. Although maximal oxygen consumption (VO2 max) did not differ significantly for the cyclists for treadmill running and cycling (64.6 +/- 1.0 and 63.5 +/- 0.4 ml O2.kg-1-min-1, respectively), both TLa and TVE occurred at a relatively earlier work load during the treadmill run. The opposite was true for the runners as TLa and TVE appeared at an earlier percent of VO2max during cycling compared with treadmill running (60.0 +/- 1.7 vs. 75.0 +/- 4.0%, respectively, TLa). The inflection in plasma epinephrine shifted in an identical manner and occurred simultaneously with that of TLa (r = 0.97) regardless of the testing protocol or training status. Although a high correlation (r = 0.86) existed for the shift in TVE and TLa, this relationship was not as strong as was seen with plasma epinephrine. The results suggest that a causal relationship existed between the inflection in plasma epinephrine and TLa during a graded exercise test. This association was not as strong for TVE and TLa.  相似文献   

8.
Humoral factors play an important role in the control of exercise hyperpnea. The role of neuromechanical ventilatory factors, however, is still being investigated. We tested the hypothesis that the afferents of the thoracopulmonary system, and consequently of the neuromechanical ventilatory loop, have an influence on the kinetics of oxygen consumption (VO2), carbon dioxide output (VCO2), and ventilation (VE) during moderate intensity exercise. We did this by comparing the ventilatory time constants (tau) of exercise with and without an inspiratory load. Fourteen healthy, trained men (age 22.6 +/- 3.2 yr) performed a continuous incremental cycle exercise test to determine maximal oxygen uptake (VO2max = 55.2 +/- 5.8 ml x min(-1) x kg(-1)). On another day, after unloaded warm-up they performed randomized constant-load tests at 40% of their VO2max for 8 min, one with and the other without an inspiratory threshold load of 15 cmH2O. Ventilatory variables were obtained breath by breath. Phase 2 ventilatory kinetics (VO2, VCO2, and VE) could be described in all cases by a monoexponential function. The bootstrap method revealed small coefficients of variation for the model parameters, indicating an accurate determination for all parameters. Paired Student's t-tests showed that the addition of the inspiratory resistance significantly increased the tau during phase 2 of VO2 (43.1 +/- 8.6 vs. 60.9 +/- 14.1 s; P < 0.001), VCO2 (60.3 +/- 17.6 vs. 84.5 +/- 18.1 s; P < 0.001) and VE (59.4 +/- 16.1 vs. 85.9 +/- 17.1 s; P < 0.001). The average rise in tau was 41.3% for VO2, 40.1% for VCO2, and 44.6% for VE. The tau changes indicated that neuromechanical ventilatory factors play a role in the ventilatory response to moderate exercise.  相似文献   

9.
10.
The effect of a single bout of mild exercise on glucose effectiveness (S(G)) and insulin sensitivity (S(I)) was studied in six young male subjects by using a minimal model. An intravenous glucose tolerance test was performed under two conditions as follows: 1) 25 min after a bout of exercise on a cycle ergometer at the lactate threshold level for 60 min (Ex) and 2) without any prior exercise (Con). Leg blood flow (LBF) was also measured by strain-gauge plethysmography simultaneously with blood sampling. S(I) did not significantly change after exercise (18.1 +/- 1.5 vs. 17.7 +/- 1.9 x 10-(5) min/pM), whereas S(G) significantly increased (0.016 +/- 0.002 vs. 0.025 +/- 0.002 min(-1), P < 0.01). The increased blood flow after exercise remained high during the time period for measurement of the glucose disappearance constant and may be a determinant of S(G). The incremental lactate area under the curve until insulin loading was also significantly higher in Ex than in Con (2.6 +/- 0.9 vs. -3.5 +/- 1.5 mM/min, P < 0.05). These results suggest that increased S(G) after mild exercise may be due, at least in part, to increased LBF and lactate production under a hyperglycemic state.  相似文献   

11.
The metabolic and ventilatory responses to steady state submaximal exercise on the cycle ergometer were compared at four intensities in 8 healthy subjects. The trials were performed so that, after a 10 min adaptation period, power output was adjusted to maintain steady state VO2 for 30 min at values equivalent to: (1) the aerobic threshold (AeT); (2) between the aerobic and the anaerobic threshold (AeTAnT); (3) the anaerobic threshold (AnT); and (4) between the anaerobic threshold and VO2max (AnTmax). Blood lactate concentration and ventilatory equivalents for O2 and CO2 demonstrated steady state values during the last 20 min of exercise at the AeT, AeAnT and AnT intensities, but increased progressively until fatigue in the AnTmax trial (mean time = 16 min). Serum glycerol levels were significantly higher at 40 min of exercise on the AeAnT and the AnT when compared to AeT, while the respiratory exchange ratios were not significantly different from each other. Thus, metabolic and ventilatory steady state can be maintained during prolonged exercise at intensities up to and including the AnT, and fat continues to be a major fuel source when exercise intensities are increased from the AeT to the AnT in steady state conditions. The blood lactate response to exercise suggests that, for the organism as a whole, anaerobic glycolysis plays a minor role in the energy release system at exercise intensities upt to and including the AnT during steady state conditions.  相似文献   

12.
The effect of carbonic anhydrase (CA) inhibition with acetazolamide (Acz, 10 mg/kg body wt iv) on exercise performance and the ventilatory (VET) and lactate (LaT) thresholds was studied in seven men during ramp exercise (25 W/min) to exhaustion. Breath-by-breath measurements of gas exchange were obtained. Arterialized venous blood was sampled from a dorsal hand vein and analyzed for plasma pH, PCO(2), and lactate concentration ([La(-)](pl)). VET [expressed as O(2) uptake (VO(2)), ml/min] was determined using the V-slope method. LaT (expressed as VO(2), ml/min) was determined from the work rate (WR) at which [La(-)](pl) increased 1.0 mM above rest levels. Peak WR was higher in control (Con) than in Acz sutdies [339 +/- 14 vs. 315 +/- 14 (SE) W]. Submaximal exercise VO(2) was similar in Acz and Con; the lower VO(2) at exhaustion in Acz than in Con (3.824 +/- 0. 150 vs. 4.283 +/- 0.148 l/min) was appropriate for the lower WR. CO(2) output (VCO(2)) was lower in Acz than in Con at exercise intensities >/=125 W and at exhaustion (4.375 +/- 0.158 vs. 5.235 +/- 0.148 l/min). [La(-)](pl) was lower in Acz than in Con during submaximal exercise >/=150 W and at exhaustion (7.5 +/- 1.1 vs. 11.5 +/- 1.1 mmol/l). VET was similar in Acz and Con (2.483 +/- 0.086 and 2.362 +/- 0.110 l/min, respectively), whereas the LaT occurred at a higher VO(2) in Acz than in Con (2.738 +/- 0.223 vs. 2.190 +/- 0.235 l/min). CA inhibition with Acz is associated with impaired elimination of CO(2) during the non-steady-state condition of ramp exercise. The similarity in VET in Con and Acz suggests that La(-) production is similar between conditions but La(-) appearance in plasma is reduced and/or La(-) uptake by other tissues is enhanced after the Acz treatment.  相似文献   

13.
To determine the effect of the duration of incremental exercise on the point at which arterial blood lactate concentration (HLa) increases above the resting value (anaerobic threshold: AT) and on the point at which HLa reaches a constant value of 4 mM (onset of blood lactate accumulation: OBLA), eight male students performed two different kinds of incremental exercise. A comparison of arterial HLa and venous HLa was made under both conditions of incremental exercise. The incremental bicycle exercise tests consisted of 25 W increase every minute (1-min test) and every 4 min (4-min test). At maximal exercise, there were no significant differences in either gas exchange parameters or HLa values for the two kinds of incremental exercise. However, the peak workloads attained during the two exercises were significantly different (P less than 0.01). At OBLA and AT, there were no significant differences in gas exchange parameters during the 1-min and 4-min tests except for the workload (at OBLA P less than 0.01; at AT P less than 0.05). When venous blood HLa was used instead of arterial HLa for a 4-min test, AT was not significantly different from that obtained by arterial HLa, but OBLA was significantly different from that obtained by arterial HLa (P less than 0.05). On the other hand, for the 1-min test, venous HLa values yielded significantly higher AT and OBLA compared with those obtained using arterial HLa (P less than 0.01). It was concluded that when arterial blood was used, there was no effect of duration of workload increase in an incremental exercise test on the determination of the AT and OBLA expressed in VO2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Thirty-three college women (mean age = 21.8 years) participated in a 5 d X wk-1, 12 week training program. Subjects were randomly assigned to 3 groups, above lactate threshold (greater than LT) (N = 11; trained at 69 watts above the workload associated with LT), = LT (N = 12; trained at the work load associated with LT) and control (C) (N = 10). Subjects were assessed for VO2max, VO2LT, VO2LT/VO2max, before and after training, using a discontinuous 3 min incremental (starting at 0 watts increasing 34 watts each work load) protocol on a cycle ergometer (Monark). Respiratory gas exchange measures were determined using standard open circuit spirometry while LT was determined from blood samples taken immediately following each work load from an indwelling venous catheter located in the back of a heated hand. Body composition parameters were determined before and after training via hydrostatic weighing. Training work loads were equated so that each subject expended approximately 1465 kJ per training session (Monark cycle ergometer) regardless of training intensity. Pretraining, no significant differences existed between groups for any variable. Post training the greater than LT group had significantly higher VO2max (13%), VO2LT (47%) and VO2LT/VO2max (33%) values as compared to C (p less than .05). Within group comparisons revealed that none of the groups significantly changed VO2max as a result of training, only the greater than LT group showed a significant increase in VO2LT (48%) (p less than .05), while both the = LT and greater than LT group showed significant increases in VO2LT/VO2max (= LT 16%, greater than LT 42% (p less than .05)).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Temperature and sweating responses in one-legged and two-legged exercise.   总被引:1,自引:0,他引:1  
In looking at the thermoregulatory responses resulting from symmetrical or asymmetrical exercise, this paper has focused on the effect of local skin temperature (Tsk,local) on local sweat rates (msw,local) during one-legged (W1) and two-legged (W2) exercise on an ergocycle. Five subjects underwent four 3-h tests at 36 degrees C, each consisting of six 25-min exercise periods alternating with 5-min rest periods. The subjects performed W1 and W2 at 45 and 90 W, respectively, either dehydrated or rehydrated. Body temperatures and total sweat rate were measured as well as four msw,local (on chest and thighs), assessed from sweat capsules under which Tsk,local was maintained at predetermined levels (37.0 degrees C and 35.5 degrees C). The combinations of Tsk,local levels, capsule locations, exercise intensity and hydration level chosen in our protocol led to the following results. The hydration level affected rectal temperature but not total or msw,local. No specific effect of muscle activity was found; msw,local on thighs of resting and working legs were similar. The msw,local were only influenced by exercise intensity, msw,local being more elevated during the higher intensity. No significant effect of Tsk,local on msw,local was found, whatever the experimental condition and/or the location. It was concluded that local thermal effects on msw,local could have been masked by the strong central drive for sweating which has been found to exist in subjects exercising in a warm environment.  相似文献   

16.
To determine the effects of cycle and run training on rating of perceived exertion at the lactate threshold (LT), college men completed a 40-session training program in 10 weeks (n = 6 run training, n = 5 cycle training, n = 5 controls). Pre- and post-training variables were measured during graded exercise tests on both the bicycle ergometer and treadmill. ANOVA on the pre- and post-training difference scores resulted in similar improvements in VO2max for both testing protocols, regardless of training mode. The run training group increased VO2 at the LT by 58.5% on the treadmill protocol and by 20.3% on the cycle ergometer. Cycle trainers increased VO2 LT only during cycle ergometry (+38.7%). No changes were observed in the control group. No differences for RPE at the LT were found before or after training, or between testing protocols for any group. Perception of exercise intensity at the LT ranged from "very light" to "light". The relationship between RPE and %VO2max was altered by the specific mode of training, with trained subjects having a lower RPE at a given %VO2max (no change in RPE at max.). It was concluded that RPE at the LT was not affected by training, despite the fact that after training the LT occurs at a higher work rate and was associated with higher absolute and relative metabolic and cardiorespiratory demands.  相似文献   

17.
The purpose of this study was to compare various methods and criteria used to identify the anaerobic threshold (AT), and to correlate the AT obtained with each other and with running performance. Furthermore, a number of additional points throughout the entire range of lactate concentrations [La] were obtained and correlated with performance. A group of 19 runners [mean age 33.7 (SD 9.6) years, height 173 (SD 6.3) cm, body mass 68.3 (SD 5.4) kg, maximal O2 uptake (O2 max ) 55.2 (SD 5.9) ml · kg−1 · min−1] performed a maximal multistage treadmill test (1 km · h−1 every 3.5 min) with blood sampling at the end of each stage while running. All AT points selected (visual [La], 4 mmol · l−1 [La], 1 mmol · l−1 above baseline, log-log breakpoint, and 45° tangent to the exponential regression) were highly correlated one with another and with performance (r > 0.90) even when there were many differences among the AT (P < 0.05). The additional points (ranging from 3 to 8 mmol · l−1 [La], 1 to 6 mmol · l−1 [La] above the baseline, and 30 to 70° tangent to the exponential curve of [La]) were also highly correlated with performance (r > 0.90). These results failed to demonstrate a distinct AT because many points of the curve provided similar information. Intercorrelations and correlations between AT and performance were, however, reduced when AT were expressed as the percentage of maximal treadmill speed obtained at AT or percentage of O2 max . This would indicate that different attributes of aerobic performance (i.e. maximal aerobic power, running economy and endurance) are measured when manipulating units. Thus, coaches should be aware of these results when they prescribe an intensity for training and concentrate more on the physiological consequences of a chosen [La] rather than on a “threshold”. Accepted: 22 October 1997  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号