首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large conductance calcium activated potassium channels (BKCa) are fundamental in the control of cellular excitability. Thus, compounds that activate BKCa channels could provide potential therapies in the treatment of pathologies of the cardiovascular and central nervous system. A series of novel N-arylbenzamide compounds, and the reference compound NS1619, were evaluated for BKCa channel opener properties in Human Embryonic Kidney (HEK293) cells expressing the human BKCa channel α-subunit alone or α + β1-subunit complex.Channel activity was determined using a non-radioactive Rb+ efflux assay to construct concentration effect curves for each compound. All N-arylbenzamide compounds and NS1619 evoked significant (p <0.05) concentration related increases in Rb+ efflux both in cells expressing α-subunit alone or α + β1-subunits. Co-expression of the β1-subunit modified the Rb+ efflux responses, relative to that obtained in cells expressing the α-subunit alone, for most of the N-arylbenzamide compounds, in contrast to NS1619. The EC40 values of NS1619, BKMe1 and BKOEt1 were not significantly affected by the co-expression of the BKCa channel α + β1-subunits. In contrast, 5 other N-arylbenzamides (BKPr2, BKPr3, BKPr4, BKH1 and BKVV) showed a significant (p <0.05) 2- to 10-fold increase in EC40 values when tested on the BKCa α + β1-subunit expressing cells compared to BKCa α-subunit expressing cells. Further, the Emax values for BKPr4, BKVV and BKH1 were lower in the BKCa channel α + β1-subunit expressing cells.In conclusion, the N-arylbenzamides studied, like NS1619, were able to activate BKCa channels formed of the α-subunit only. The co-expression of the β1-subunit, however, modified the ability of certain compounds to active the channel leading to differentiated pharmacodynamic profiles.  相似文献   

2.
Large-conductance Ca2+-activated K+ (BKCa) channels are widely distributed in cellular membranes of various tissues, but have not previously been found in cardiomyocytes. In this study, we cloned a gene encoding the mouse cardiac BKCa channel α-subunit (mCardBKa). Sequence analysis of the cDNA revealed an open reading frame encoding 1154 amino acids. Another cDNA variant, identical in amino acid sequence, was also identified by sequence analysis. The nucleotide sequences of the two mCardBKa cDNAs, type 1 (mCardBKa1) and type 2 (mCardBKa2), differed by three nucleotide insertions and one nucleotide substitution in the N-terminal sequence. The amino acid sequence demonstrated that mCardBKa was a unique BKCa channel α-subunit in mouse cardiomyocytes, with amino acids 41-1153 being identical to calcium-activated potassium channel SLO1 and amino acids 1-40 corresponding to BKCa channel subfamily M alpha member 1. These findings suggest that a unique BKCa channel α-subunit is expressed in mouse cardiomyocytes.  相似文献   

3.
The N-terminus of the Na+,K+-ATPase α-subunit shows some homology to that of Shaker-B K+ channels; the latter has been shown to mediate the N-type channel inactivation in a ball-and-chain mechanism. When the Torpedo Na+,K+-ATPase is expressed in Xenopus oocytes and the pump is transformed into an ion channel with palytoxin (PTX), the channel exhibits a time-dependent inactivation gating at positive potentials. The inactivation gating is eliminated when the N-terminus is truncated by deleting the first 35 amino acids after the initial methionine. The inactivation gating is restored when a synthetic N-terminal peptide is applied to the truncated pumps at the intracellular surface. Truncated pumps generate no electrogenic current and exhibit an altered stoichiometry for active transport. Thus, the N-terminus of the α-subunit appears to act like an inactivation gate and performs a critical step in the Na+,K+-ATPase pumping function.  相似文献   

4.
Large-conductance Ca2+-activated K+ channel is formed by a tetramer of the pore-forming α-subunit and distinct accessory β-subunits (β1–β4) which contribute to BKCa channel molecular diversity. Accumulative evidences indicate that not only α-subunit alone but also the α + β subunit complex and/or β-subunit might play an important role in modulating various physiological functions in most mammalian cells. To evaluate the detailed pharmacological and biophysical properties of α + β1 subunit complex or β1-subunit in BKCa channel, we established an expression system that reliably coexpress hSloα + β1 subunit complex in HEK293 cells. The coexpression of hSloα + β1 subunit complex was evaluated by western blotting and immunolocalization, and then the single-channel kinetics and pharmacological properties of expressed hSloα + β1 subunit complex were investigated by cell-attached and outside-out patches, respectively. The results in this study showed that the expressed hSloα + β1 subunit complex demonstrated to be fully functional for its typical single-channel traces, Ca2+-sensitivity, voltage-dependency, high conductance (151 ± 7 pS), and its pharmacological activation and inhibition.  相似文献   

5.
The orientation of amino groups in the membrane in the α- and β-subunits of (Na+ + K+)-ATPase was examined by labeling with Boldon-Hunter reagent, N-succinimidyl 3-(4-hydroxy,5-[125I]iodophenyl)propionate), in right-side-out vesicles or in open membrane fragments from the thick ascending limbs of the Henles loop of pig kidney. Sealed right-side-out vesicles of basolateral membranes were separated from open membrane fragments by centrifugation in a linear metrizamide density gradient. After labeling, (Na+ + K+)-ATPase was purified using a micro-scale version of the ATP-SDS procedure. Distribution of label was analyzed after SDS-gel electrophoresis of α-subunit, β-subunit and proteolytic fragments of α-subunit. Both the α- and the β-subunit of (Na+ + K+)-ATPase are uniformly labeled, but the distribution of labeled residues on the two membrane surfaces differs markedly. All the labeled residues in the β-subunit are located on the extracellular surface. In the α-subunit, 65–80% of modified groups are localized to the cytoplasmic surface and 20–35% to the extracellular membrane surface. Proteolytic cleavage provides evidence for the random distribution of 125I-labeling within the α-subunit. The preservation of (Na+ + K+)-ATPase activity and the observation of distinct proteolytic cleavage patterns of the E1- and E2-forms of the α-subunit show that the native enzyme structure is unaffected by labeling with Bolton-Hunter reagent. Bolton-Hunter reagent was shown not to permeate into sheep erythrocytes under the conditions of the labeling experiment. The data therefore allow the conclusion that the mass distribution is asymmetric, with all the labeled amino groups in the β-subunit being on the extracellular surface, while the α-subunit exposes 2.6-fold more amino groups on the cytoplasmic than on the extracellular surface.  相似文献   

6.
Substitutions within the cardenolide target site of several insects' Na,K-ATPase α-subunits may confer resistance against toxic cardenolides. However, to which extent these substitutions alter the Na,K-ATPase's kinetic properties and how they interact with different β-subunits is not clear. The cardenolide-adapted milkweed bug Oncopeltus fasciatus possesses three paralogs of the α-subunit (A, B, and C) that differ in number and identity of resistance-conferring substitutions. We introduced these substitutions into the α-subunit of Drosophila melanogaster and combined them with the β-subunits Nrv2.2 and Nrv3. The substitutions Q111T-N122H-F786N-T797A (A-copy mimic) and Q111T-N122H-F786N (B-copy mimic) mediated high insensitivity to ouabain, yet they drastically lowered ATPase activity. Remarkably, the identity of the β-subunit was decisive and all α-subunits were less active when combined with Nrv3 than when combined with Nrv2.2. Both the substitutions and the co-expressed β-subunit strongly affected the enyzme's affinity for Na+ and K+. Na+ affinity was considerably higher for all enzymes expressed with nrv3 while expression with nrv2.2 mostly increased K+ affinity. Our results provide the first evidence that resistance against cardenolides comes at the cost of significantly altered kinetic properties of the Na,K-ATPase. The β-subunit can strongly modulate these properties but cannot fully compensate for the effect of the substitutions.  相似文献   

7.
The Na,K-ATPase is an ion-translocating transmembrane protein that actively maintains the electrochemical gradients for Na+ and K+ across the plasma membrane. The functional protein is a heterodimer comprising a catalytic α-subunit (four isoforms) and an ancillary β-subunit (three isoforms). Mutations in the α2-subunit have recently been implicated in familial hemiplegic migraine type 2, but almost no thorough studies of the functional consequences of these mutations have been provided. We investigated the functional properties of the mutations L764P and W887R in the human Na,K-ATPase α2-subunit upon heterologous expression in Xenopus oocytes. No Na,K-ATPase-specific pump currents could be detected in cells expressing these mutants. The binding of radiolabelled [3H]ouabain to intact cells suggested that this could be due to a lack of plasma membrane expression. However, plasma membrane isolation showed that the mutated pumps are well expressed at the plasma membrane. 86Rb+-flux and ATPase activity measurements demonstrated that the mutants are inactive. Therefore, the primary disease-causing mechanism is loss-of-function of the Na,K-ATPase α2-isoform.  相似文献   

8.
9.
10.
In the first (lamina) and second (medulla) optic neuropils of Drosophila melanogaster, sodium pump subunit expression changes during the day and night, controlled by a circadian clock. We examined α-subunit expression from the intensity of immunolabeling. For the β-subunit, encoded by Nervana 2 (Nrv2), we used Nrv2-GAL4 to drive expression of GFP, and measured the resultant fluorescence in whole heads and specific optic lobe cells. All optic neuropils express the α-subunit, highest at the beginning of night in both lamina and medulla in day/night condition and the oscillation was maintained in constant darkness. This rhythm was lacking in the clock arrhythmic per0 mutant. GFP driven by Nrv2 was mostly detected in glial cells, mainly in the medulla. There, GFP expression occurs in medulla neuropil glia (MNGl), which express the clock gene per, and which closely contact the terminals of clock neurons immunoreactive to pigment dispersing factor. GFP fluorescence exhibited circadian oscillation in whole heads from Nrv2-GAL4 + UAS-S65T-GFP flies, although significant GFP oscillations were lacking in MNGl, as they were for both subunit mRNAs in whole-head homogenates. In the dissected brain tissues, however, the mRNA of the α-subunit showed a robust daily rhythm in concentration changes while changes in the β-subunit mRNA were weaker and not statistically significant. Thus in the brain, the genes for the sodium pump subunits, at least the one encoding the α-subunit, seem to be clock-controlled and the abundance of their corresponding proteins mirrors daily changes in mRNA, showing cyclical accumulation in cells.  相似文献   

11.
The guanine nucleotide binding regulatory proteins (G proteins) play essential roles in a wide variety of physiological processes, such as vision, hormone responses, olfaction, immune response, and development. The heterotrimeric G proteins consist of α-, β-, and γ-subunits and act as molecular switches to relay information from transmembrane receptors to intracellular effectors. The switch mechanism is a function of the inherent GTPase activity of the α-subunit. The α-subunit is comprised of two domains, the GTPase domain and the Helical domain. The GTPase domain performs all of the known α-subunit functions while little is know about the role of the Helical domain. To gain a better understanding of α-subunit function, we performed a screen for loss-of-function mutations, using the Gα2-subunit of Dictyostelium. Gα2 is essential for the developmental life cycle of Dictyostelium. It is known that the loss of Gα2 function results in a failure of cells to enter the developmental phase, producing a visibly abnormal phenotype. This allows the easy identification of amino acids essential to Gα2 function. A library of random point mutations in the gα2 cDNA was constructed using low fidelity polymerase chain reaction (PCR). The library was then expressed in a gα2 null cell line and screened for loss-of-function mutations. Mutations were identified in isolated clones by sequencing the gα2 insert. To date, sixteen single amino acids changes have been identified in Gα2 which result in loss-of-function. Of particular interest are seven mutations found in the Helical domain of the α-subunit. These loss-of-function mutations in the α-subunit Helical domain may provide important insight into its function.  相似文献   

12.
Purified kidney Na+,K+-ATPase whose α-subunit is cleaved by chymotrypsin at Leu266-Ala267, loses ATPase activity but forms the phosphoenzyme intermediate (EP) from ATP. When EP formation was correlated with extent of α-cleavage in the course of proteolysis, total EP increased with time before it declined. The magnitude of this rise indicated doubling of the number of phosphorylation sites after cleavage. Together with previous findings, these data establish that half of the α-subunits of oligomeric membrane-bound enzyme are dormant and that interaction of the N-terminal domain of α-subunit with its phosphorylation domain causes this half-site reactivity. Evidently, disruption of this interaction by proteolysis abolishes overall activity while it opens access to phosphorylation sites of all α-subunits.  相似文献   

13.
《FEBS letters》1998,427(1):149-151
A potassium channel toxin (AeK) was isolated from the sea anemone Actinia equina by gel filtration on Sephadex G-50 and reverse-phase HPLC on TSKgel ODS-120T. AeK and α-dendrotoxin inhibited the binding of 125I-α-dendrotoxin to rat synaptosomal membranes with IC50 of 22 and 0.34 nM, respectively, indicating that AeK is about sixty-five times less toxic than α-dendrotoxin. The complete amino acid sequence of AeK was elucidated; it is composed of 36 amino acid residues including six half-Cys residues. The determined sequence showed that AeK is analogous to the three potassium channel toxins from sea anemones (BgK from Bunodosoma granulifera, ShK from Stichodactyla helianthus and AsKS from Anemonia sulcata), with an especially high sequence homology (86%) with AsKS.  相似文献   

14.
Yang H  Zhang G  Shi J  Lee US  Delaloye K  Cui J 《Biophysical journal》2008,94(12):4678-4687
Large conductance Ca2+- and voltage-activated K+ (BK) channels, composed of pore-forming α-subunits and auxiliary β-subunits, play important roles in diverse physiological processes. The differences in BK channel phenotypes are primarily due to the tissue-specific expression of β-subunits (β1-β4) that modulate channel function differently. Yet, the molecular basis of the subunit-specific regulation is not clear. In our study, we demonstrate that perturbation of the voltage sensor in BK channels by mutations selectively disrupts the ability of the β1-subunit—but not that of the β2-subunit—to enhance apparent Ca2+ sensitivity. These mutations change the number of equivalent gating charges, the voltage dependence of voltage sensor movements, the open-close equilibrium of the channel, and the allosteric coupling between voltage sensor movements and channel opening to various degrees, indicating that they alter the conformation and movements of the voltage sensor and the activation gate. Similarly, the ability of the β1-subunit to enhance apparent Ca2+ sensitivity is diminished to various degrees, correlating quantitatively with the shift of voltage dependence of voltage sensor movements. In contrast, none of these mutations significantly reduces the ability of the β2-subunit to enhance Ca2+ sensitivity. These results suggest that the β1-subunit enhances Ca2+ sensitivity by altering the conformation and movements of the voltage sensor, whereas the similar function of the β2-subunit is governed by a distinct mechanism.  相似文献   

15.
The differentiation of vascular smooth muscle cells (VSMCs), which are exposed to mechanical stretch in vivo, plays an important role in vascular remodeling during hypertension. Here, we demonstrated the mechanobiological roles of large conductance calcium and voltage-activated potassium (BK) channels in this process. In comparison with 5% stretch (physiological), 15% stretch (pathological) induced the de-differentiation of VSMCs, resulting in significantly decreased expressions of VSMC markers, i.e., α-actin, calponin and SM22. The activity of BK channels, assessed by patch clamp recording, was significantly increased by 15% stretch and was accompanied by an increased alternative splicing of BK channel α-subunit at the stress axis-regulated exons (STREX). Furthermore, transfection of whole BK or STREX-deleted BK plasmids revealed that STREX was important for BK channels to sense mechanical stretch. Using thapsigargin (TG) which induces endoplasmic reticulum (ER) stress, and xbp1-targeted siRNA transfection which blocks ER stress, the results revealed that ER stress was contribute to stretch-induced alternative splicing of STREX. Our results suggested that during hypertension, pathological stretch may induce the ER stress in VSMCs, which affects the alternative splicing and activity of BK channels, and subsequently modulates VSMC differentiation.  相似文献   

16.
Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein hormone essential for the establishment and maintenance of pregnancy. The α- and β-subunits of hCG are highly cross-linked internally by disulfide bonds that seem to stabilize the tertiary structures required for the noncovalent association of the subunits to generate hormonal activity. This paper describes the results of our studies on the role of the disulfide bonds of hCG-β in heterodimer formation with the α-subunit. Six disulfide peptides incorporating each of the six disulfide bonds of hCG-β were screened, along with their linear counterparts, for their ability to competitively inhibit the recombination of α- and β-subunits. The disulfide peptides Cys (9–57), Cys (34–88) and Cys (38–90) were found to inhibit the α/β recombination whereas the remaining three disulfide peptides viz. Cys (23–72), Cys (26–110) and Cys (93–100) did not exhibit any inhibition activity. Interestingly, none of the linear peptides could inhibit the α/β recombination. Results clearly demonstrate that the disulfide bonds Cys9–Cys57, Cys34–Cys88 and Cys38–Cys90 of the β-subunit of hCG are crucial for heterodimer formation with the α-subunit thus providing experimental confirmation of the conclusions from the crystal structure of the hormone.  相似文献   

17.
GABAA receptors are members of the ligand-gated ion channel superfamily that mediate inhibitory neurotransmission in the central nervous system. They are thought to be composed of 2 alpha (α), 2 beta (β) subunits and one other such as a gamma (γ) or delta (δ) subunit. The potency of GABA is influenced by the subunit composition. However, there are no reported systematic studies that evaluate GABA potency on a comprehensive number of subunit combinations expressed in Xenopus oocytes, despite the wide use of this heterologous expression system in structure–function studies and drug discovery. Thus, the aim of this study was to conduct a systematic characterization of the potency of GABA at 43 human recombinant GABAA receptor combinations expressed in Xenopus oocytes using the two-electrode voltage clamp technique. The results show that the α-subunits and to a lesser extent, the β-subunits influence GABA potency. Of the binary and ternary combinations with and without the γ2L subunit, the α6/γ2L-containing receptors were the most sensitive to GABA, while the β2- or β3-subunit conferred higher sensitivity to GABA than receptors containing the β1-subunit with the exception of the α2β1γ2L and α6β1γ2L subtypes. Of the δ-subunit containing GABAA receptors, α4/δ-containing GABAA receptors displayed highest GABA sensitivity, with mid-nanomolar concentrations activating α4β1δ and α4β3δ receptors. At α4β2δ, GABA had low micromolar activity.  相似文献   

18.
Potassium is the most abundant cation and a myriad of transporters regulate K+ homeostasis in plant. Potassium plays a role as a major osmolyte to regulate stomatal movements that control water utility of land plants. Here we report the characterization of two inward rectifying shaker-like potassium channels, OsKAT2 and OsKAT3, expressed in guard cell of rice plants. While OsKAT2 showed typical potassium channel activity, like that of Arabidopsis KAT1, OsKAT3 did not despite high sequence similarity between the two channel proteins. Interestingly, the two potassium channels physically interacted with each other and such interaction negatively regulated the OsKAT2 channel activity in CHO cell system. Furthermore, deletion of the C-terminal domain recovered the channel activity of OsKAT3, suggesting that the C-terminal region was regulatory domain that inhibited channel activity. Two homologous channels with antagonistic interaction has not been previously reported and presents new information for potassium channel regulation in plants, especially in stomatal regulation.  相似文献   

19.
The large conductance voltage- and Ca2+-activated K+ (BK) channel is a major ionic determinant of vascular tone, vasodilation, and blood pressure. The activity of BK channels is regulated in part by membrane presentation. Rab GTPase (Rab) regulates important cellular processes, including ion channel membrane trafficking. We hypothesize that Rab4a participates in the regulation of BK channel α-subunit (BK-α) membrane trafficking. We found that vascular BK-α interacts physically with Rab4a. Co-expression of dominant-negative Rab4a reduced BK-α surface expression, whereas that of constitutively-active Rab4a augmented BK-α surface presentation. These novel findings suggest that vascular BK channel membrane expression is regulated by Rab4a through channel membrane trafficking.  相似文献   

20.
The α-glucosidase II (GII) is a heterodimer of α- and β-subunits and important for N-glycosylation processing and quality control of nascent glycoproteins. Although high concentration of α-glucosidase inhibitors from mulberry leaves accumulate in silkworms (Bombyx mori) by feeding, silkworm does not show any toxic symptom against these inhibitors and N-glycosylation of recombinant proteins is not affected. We, therefore, hypothesized that silkworm GII is not sensitive to the α-glucosidase inhibitors from mulberry leaves. However, the genes for B. mori GII subunits have not yet been identified, and the protein has not been characterized. Therefore, we isolated the B. mori GII α- and β-subunit genes and the GII α-subunit gene of Spodoptera frugiperda, which does not feed on mulberry leaves. We used a baculovirus expression system to produce the recombinant GII subunits and identified their enzyme characteristics. The recombinant GII α-subunits of B. mori and S. frugiperda hydrolyzed p-nitrophenyl α-d-glucopyranoside (pNP-αGlc) but were inactive toward N-glycan. Although the B. mori GII β-subunit was not required for the hydrolysis of pNP-αGlc, a B. mori GII complex of the α- and β-subunits was required for N-glycan cleavage. As hypothesized, the B. mori GII α-subunit protein was less sensitive to α-glucosidase inhibitors than was the S. frugiperda GII α-subunit protein. Our observations suggest that the low sensitivity of GII contributes to the ability of B. mori to evade the toxic effect of α-glucosidase inhibitors from mulberry leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号