首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In two-day rat pups, the histone H1 content in the brain chromatin was higher than in the liver chromatin, as compared to histone of the nucleosome core. The H1 content in the brain chromatin decreased with the age, while in the liver chromatin it increased. At the same time, in the adult brain chromatin bound to the nuclear envelope, a high level of H1 characteristic of chromatin of the newborn rats was preserved, while in a similar chromatin of the adult liver, the H1 content increased, but still remained less than in the chromatin not bound to the nuclear envelope. In both organs, the composition and quantitation of H1 subfractions were different in chromatins bound and not bound to the nuclear envelope. The chromatin from the liver and brain bound to the nuclear envelope differed also in the composition and quantitation of minor acid soluble proteins. In the presence of the antioxidant ionol, the 5-methylcytosine content in DNA of chromatin of the rat liver bound to the nuclear envelope increased while in the chromatin not bound to the nuclear envelope, it remained unchanged. Thus the chromatins bound and not bound to the nuclear envelope differ in the composition and mount of acid soluble proteins, including histone H1, the contents of these proteins in bound and not bound chromatin are different and change with the age in different ways. The antioxidant ionol affects differently the methylation of bound and not bound chromatin.  相似文献   

2.
Special AT-rich sequence-binding protein 1 (SATB1), a DNA-binding protein expressed predominantly in thymocytes, recognizes an ATC sequence context that consists of a cluster of sequence stretches with well-mixed A's, T's, and C's without G's on one strand. Such regions confer a high propensity for stable base unpairing. Using an in vivo cross-linking strategy, specialized genomic sequences (0.1–1.1 kbp) that bind to SATB1 in human lymphoblastic cell line Jurkat cells were individually isolated and characterized. All in vivo SATB1-binding sequences examined contained typical ATC sequence contexts, with some exhibiting homology to autonomously replicating sequences from the yeast Saccharomyces cerevisiae that function as replication origins in yeast cells. In addition, LINE 1 elements, satellite 2 sequences, and CpG island–containing DNA were identified. To examine the higher-order packaging of these in vivo SATB1-binding sequences, high-resolution in situ fluorescence hybridization was performed with both nuclear “halos” with distended loops and the nuclear matrix after the majority of DNA had been removed by nuclease digestion. In vivo SATB1-binding sequences hybridized to genomic DNA as single spots within the residual nucleus circumscribed by the halo of DNA and remained as single spots in the nuclear matrix, indicating that these sequences are localized at the base of chromatin loops. In human breast cancer SK-BR-3 cells that do not express SATB1, at least one such sequence was found not anchored onto the nuclear matrix. These findings provide the first evidence that a cell type–specific factor such as SATB1 binds to the base of chromatin loops in vivo and suggests that a specific chromatin loop domain structure is involved in T cell–specific gene regulation.  相似文献   

3.
Neutrophils are characterized by their distinct nuclear shape, which is thought to facilitate the transit of these cells through pore spaces less than one-fifth of their diameter. We used human promyelocytic leukemia (HL-60) cells as a model system to investigate the effect of nuclear shape in whole cell deformability. We probed neutrophil-differentiated HL-60 cells lacking expression of lamin B receptor, which fail to develop lobulated nuclei during granulopoiesis and present an in vitro model for Pelger-Huët anomaly; despite the circular morphology of their nuclei, the cells passed through micron-scale constrictions on similar timescales as scrambled controls. We then investigated the unique nuclear envelope composition of neutrophil-differentiated HL-60 cells, which may also impact their deformability; although lamin A is typically down-regulated during granulopoiesis, we genetically modified HL-60 cells to generate a subpopulation of cells with well defined levels of ectopic lamin A. The lamin A-overexpressing neutrophil-type cells showed similar functional characteristics as the mock controls, but they had an impaired ability to pass through micron-scale constrictions. Our results suggest that levels of lamin A have a marked effect on the ability of neutrophils to passage through micron-scale constrictions, whereas the unusual multilobed shape of the neutrophil nucleus is less essential.  相似文献   

4.
The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo.  相似文献   

5.
Nuclear DNA polymerases and the HeLa cell cycle.   总被引:17,自引:0,他引:17  
Purified nuclei of HeLa S3 cells contain two DNA-dependent DNA polymerases that have distinct physical and enzymatic properties. We have investigated the variations in their activity during the cell cycle of a synchronized culture. Cells were synchronized by a double thymidine block, harvested at various phases of the cycle, and the two DNA polymerases were purified partially by DEAE-cellulose and phosphocellulose chromatography. The activity of DNA polymerase I (low molecular weight, N-ethylmaleimide-insensitive) remains essentially constant throughout the cycle. The activity of DNA polymerase II (high molecular weight, N-ethylmaleimide-sensitive), however, increases during G1 to mid-S and declines, 7- to 10-fold between late-S and G2. Addition of cycloheximide (60 mug/ml) to cultures 12 hours after the release from thymidine block abolishes the rise in the activity of DNA polymerase II. Cycloheximide also reduced the activity of DNA polymerase I by 60%. Addition of hydroxyurea (1mM) at 1 hour after release has no effect on the activity of either enzyme. We conclude that in HeLa cells, DNA polymerase I and II are distinct enzymes, that DNA polymerase II probably functions in DNA replication and is probably induced in response to stimuli for DNA biosynthesis.  相似文献   

6.
《Biophysical journal》2020,118(9):2319-2332
The nuclear morphology of eukaryotic cells is determined by the interplay between the lamina forming the nuclear skeleton, the chromatin inside the nucleus, and the coupling with the cytoskeleton. Nuclear alterations are often associated with pathological conditions as in Hutchinson-Gilford progeria syndrome, in which a mutation in the lamin A gene yields an altered form of the protein, named progerin, and an aberrant nuclear shape. Here, we introduce an inducible cellular model of Hutchinson-Gilford progeria syndrome in HeLa cells in which increased progerin expression leads to alterations in the coupling of the lamin shell with cytoskeletal or chromatin tethers as well as with polycomb group proteins. Furthermore, our experiments show that progerin expression leads to enhanced nuclear shape fluctuations in response to cytoskeletal activity. To interpret the experimental results, we introduce a computational model of the cell nucleus that explicitly includes chromatin fibers, the nuclear shell, and coupling with the cytoskeleton. The model allows us to investigate how the geometrical organization of the chromatin-lamin tether affects nuclear morphology and shape fluctuations. In sum, our findings highlight the crucial role played by lamin-chromatin and lamin-cytoskeletal alterations in determining nuclear shape morphology and in affecting cellular functions and gene regulation.  相似文献   

7.
DNA sequences that can form intramolecular quadruplex structures are found in promoters of proto-oncogenes. Many of these sequences readily fold into parallel quadruplexes. Here we characterize the ability of yeast Pif1 to bind and unfold a parallel quadruplex DNA substrate. We found that Pif1 binds more tightly to the parallel quadruplex DNA than single-stranded DNA or tailed duplexes. However, Pif1 unwinding of duplexes occurs at a much faster rate than unfolding of a parallel intramolecular quadruplex. Pif1 readily unfolds a parallel quadruplex DNA substrate in a multiturnover reaction and also generates some product under single cycle conditions. The rate of ATP hydrolysis by Pif1 is reduced when bound to a parallel quadruplex compared with single-stranded DNA. ATP hydrolysis occurs at a faster rate than quadruplex unfolding, indicating that some ATP hydrolysis events are non-productive during unfolding of intramolecular parallel quadruplex DNA. However, product eventually accumulates at a slow rate.  相似文献   

8.
In the past decade, a wide range of fascinating monogenic diseases have been linked to mutations in the LMNA gene, which encodes the A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. These diseases include dilated cardiomyopathy with variable muscular dystrophy, Dunnigan-type familial partial lipodystrophy, a Charcot-Marie-Tooth type 2 disease, mandibuloacral dysplasia, and Hutchinson-Gilford progeria syndrome. Several diseases are also caused by mutations in genes encoding B-type lamins and proteins that associate with the nuclear lamina. Studies of these so-called laminopathies or nuclear envelopathies, some of which phenocopy common human disorders, are providing clues about functions of the nuclear envelope and insights into disease pathogenesis and human aging.Mutations in LMNA encoding the A-type lamins cause a group of human disorders often collectively called laminopathies. The major A-type lamins, lamin A and lamin C, arise by alternative splicing of the LMNA pre-mRNA and are expressed in virtually all differentiated somatic cells. Although the A-type lamins are widely expressed, LMNA mutations are responsible for at least a dozen different clinically defined disorders with tissue-selective abnormalities. Mutations in genes encoding B-type lamins and lamin-associated proteins, most of which are similarly expressed in almost all somatic cells, also cause tissue-selective diseases.Research on the laminopathies has provided novel clues about nuclear envelope function. Recent studies have begun to shed light on how alterations in the nuclear envelope could explain disease pathogenesis. Along with basic research on nuclear structure, the nuclear lamins, and lamina-associated proteins, clinical research on the laminopathies will contribute to a complete understanding of the functions of the nuclear envelope in normal physiology and in human pathology.  相似文献   

9.
10.
11.
DNA Synthesis in the G1 of HeLa Cells   总被引:1,自引:0,他引:1  
DURING a search for DNA labelling outside the S phase in HeLa cells, I have found a distinct polar pattern of cytoplasmic DNA synthesis in a fraction of the population.  相似文献   

12.
细胞核是真核细胞中最大的细胞器.高等动物细胞核主要由双层核膜、核孔复合体、核纤层、染色质和核仁等组成.在细胞有丝分裂期,细胞核呈现去装配和再装配等动态变化.在细胞分裂间期,核膜、核孔复合体和核纤层构成细胞核的外周结构,为遗传物质在染色质和核仁中的代谢提供了一个相对稳定的环境,同时调控细胞核内外的物质转运,在细胞增殖、分化、个体发育和细胞衰老等许多方面发挥着重要作用.本文主要对高等动物细胞核膜和核纤层结构、功能及动态变化调控机制等方面的研究进展进行简要综述.  相似文献   

13.
14.
We have shown that urea-extracted cell wall of entomopathogenic Bacillus sphaericus 2297 and some other strains is a potent larvicide against Culex pipiens mosquitoes, with 50% lethal concentrations comparable to that of the well-known B. sphaericus binary toxin, with which it acts synergistically. The wall toxicity develops in B. sphaericus 2297 cultures during the late logarithmic stage, earlier than the appearance of the binary toxin crystal. It disappears with sporulation when the binary toxin activity reaches its peak. Disruption of the gene for the 42-kDa protein (P42) of the binary toxin abolishes both cell wall toxicity and crystal formation. However, the cell wall of B. sphaericus 2297, lacking P42, kills C. pipiens larvae when mixed with Escherichia coli cells expressing P42. Thus, the cell wall toxicity in strongly toxic B. sphaericus strains must be attributed to the presence in the cell wall of tightly bound 51-kDa (P51) and P42 binary toxin proteins. The synergism between binary toxin crystals and urea-treated cell wall preparations reflects suboptimal distribution of binary toxin subunits in both compartments. Binary toxin crystal is slightly deficient in P51, while cell wall is lacking in P42.  相似文献   

15.
We have identified the chicken equivalent of growth-associated protein GAP-43 in a detergent-resistant membrane skeleton from cultures of chick neurones and embryonic chick brain. Antisera to the membrane skeleton protein, the 3D5 antigen, precipitate the translation product of chick GAP-43 cDNA, and the 3D5 antigen is also detected by antisera against synthetic peptides from the known amino acid sequence of rat GAP-43. The chick protein and the rat GAP-43 are biochemically similar proteins that both serve as major targets of phosphorylation by endogenous protein kinase C. The detergent-resistant complex in which GAP-43 is found also contains actin (approximately 5% of the total protein) and a neurone-specific cell surface glycoprotein. We suggest that the membrane skeleton of neurones may be a primary site of action of GAP-43.  相似文献   

16.
Roles of the nuclear envelope are considered in the regulation of nuclear protein import, ribonucleoprotein export, and coupling of DNA replication to the cell cycle. First, evidence is discussed that indicates that neutral and acidic amino acids can be important in nuclear localization signals as well as the widely acknowledged basic amino acids. Second, the recognition of nuclear localization signals by their receptor “importin” is discussed, focusing on the different roles of the two subunits of importin. Third, a role for the α subunit of importin in RNP export is considered together with the question of how the direction of traffic through nuclear pores is determined. The final part of this article considers evidence that the nuclear membrane prevents reinitiation of DNA replication in Xenopus eggs, by excluding a “licensing factor” that is essential for DNA replication. Replication licensing in Xenopus appears to involve several proteins including the MCM (minichromosome maintenance) complex and ORC, the origin recognition complex, which must bind before the MCM complex can bind to chromatin.  相似文献   

17.
It was observed before that DNAin situin chromatin of mitotic cells is more sensitive to denaturation than DNA in chromatin of interphase cells. DNA sensitivity to denaturation, in these studies, was analyzed by exposing cells to heat or acid and using acridine orange (AO), the metachromatic fluorochrome which can differentially stain double-stranded (ds) vs single-stranded (ss) nucleic acids, as a marker of the degree of DNA denaturation. However, without prior cell treatment with heat or acid no presence of single-stranded DNA in either mitotic or interphase cells was detected by this assay. In the present experiments we demonstrate that DNAin situin mitotic cells, without any prior treatment that can induce DNA denaturation, is sensitive to ss-specific S1 and mung bean nucleases. Incubation of permeabilized human T cell leukemic MOLT-4, promyelocytic HL-60, histiomonocytic lymphoma U937 cells, or normal PHA-stimulated lymphocytes with S1 or mung bean nucleases generated extensive DNA breakage in mitotic cells. DNA strand breaks were detected using fluorochrome-labeled triphosphonucleotides in the reaction catalyzed by exogenous terminal deoxynucleotidyl transferase. Under identical conditions of the cells’ exposure to ss-specific nucleases, DNA breakage in interphase cells was of an order of magnitude less extensive compared to mitotic cells. The data indicate that segments of DNA in mitotic chromosomes, in contrast to interphase cells, may be in a conformation which is sensitive to ss nucleases. This may be a reflection of the differences in the torsional stress of DNA loops between interphase and mitotic chromatin. Namely, greater stress in mitotic loops may lead to formation of the hairpin-loop structures by inverted repeats; such structures are sensitive to ss nucleases. The present method of detection of such segments appears to be more sensitive than the use of AO. The identification of mitotic cells based on sensitivity of their DNA to ss nucleases provides an additional method for their quantification by flow cytometry.  相似文献   

18.
Signalling between cytosol and nucleus is mediated by nuclear pores. These supramolecular complexes represent intelligent nanomachines regulated by a wide spectrum of factors. Among them, steroid hormones specifically interact with the pores and thus modify ion conductivity and macromolecule permeability of the nuclear envelope. In response to aldosterone the pores undergo dramatic changes in conformation, changes that depend on the nature of the transported cargo. Such changes can be imaged at the nanometer scale by using atomic force microscopy. Furthermore, steroid-induced macromolecule transport across the nuclear envelope causes osmotic water movements and nuclear swelling. Drugs that interact with intracellular steroid receptors (spironolactone) or with plasma membrane sodium channels (amiloride) inhibit swelling. Steroid hormone action is blocked when nuclear volume changes are prevented. This is shown in frog oocytes and human endothelial cells. In conclusion, nuclear pores serve as steroid-sensitive gates that determine nuclear activity.  相似文献   

19.
The HeLa cell line which is one of the most popular cell lines was shown to be suitable for isolation of types A (H3N2) and B influenza viruses from throat washings of patients. Sixty-nine and 67 out of 147 throat washings taken from patients during the period from January to April, 1994, were positive for influenza A virus in HeLa cells and MDCK cells, respectively. Seven out of 10 throat washings taken between January and March, 1993, were positive for influenza B virus in MDCK. Of these 7, 4 were also positive for HeLa cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号