首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decreased antioxidant activity is considered as one of the causes of tardive dyskinesia in schizophrenic patients in a prolonged neuroleptic treatment course. Haloperidol (HAL) has been hypothesized to increase oxidative stress, while clozapine (CLO) would produce less oxidative damage. The objective was to determine whether CLO for 28 days could reverse or attenuate HAL-induced oxidative damage in animals previously treated with HAL for 28 days. HAL significantly increased thiobarbituric acid reactive substances levels in the cortex (CX) and striatum and increased protein carbonyls in hippocampus (HP) and CX and this was not attenuated by CLO treatment. In the total radical trapping antioxidant parameter assay there was a decrease in the HP total antioxidant potential induced by HAL and by treatment with HAL + CLO. Our findings demonstrated that the atypical antipsychotic CLO could not revert oxidative damage caused by HAL.  相似文献   

2.
目的研究造模时间长短对大鼠抑郁症模型建造成功率的影响。方法将240只大鼠随机平均分为4组,各组分别给予21 d、35 d、49 d、63 d慢性温和不可预见性刺激。大鼠行为学观察指标包括旷场实验、糖水消耗实验、高架十字迷宫实验、强迫游泳实验等。结果建模成功后的抑郁大鼠其旷场的水平得分、垂直得分;高架迷宫的入开臂次数、入开臂次数比例、入开臂时间和入开臂时间比例较建模前均明显下降;糖水的消耗显著降低,旷场潜伏期时间、强迫游泳静止时间显著延长。结论随着造模时间的延长,抑郁症模型的成功率增加;延长建模时间可能会提高建模成功率,为避免资源的浪费,建议造模时间选取49 d更为恰当。  相似文献   

3.
目的:探讨早期游泳运动对慢性温和应激(chronic mild stress,CMS)大鼠学习和记忆能力的影响。方法:50只SD大鼠随机分成5组:对照组、模型组、低强度运动组、中等强度运动组、高强度运动组。运动组大鼠按照游泳运动方案运动4 w,糖水消耗实验和强迫游泳实验评价大鼠抑郁程度;Morris水迷宫实验评价大鼠学习记忆能力。结果:模型组大鼠糖水消耗量和游泳不动时间较对照组明显降低(P0.01),低强度运动组和中等强度运动组大鼠较模型组糖水消耗量和游泳不动时间明显增加(P0.05或P0.01);模型组大鼠较对照组逃避潜伏期明显延长,目标象限搜索时间占总游泳时间的百分比和目标象限穿过次数减少,体质量、双侧海马质量和海马相对质量下降(P0.05或P0.01);低强度运动组和中等强度运动组大鼠较模型组比较,潜伏期缩短明显,目标象限搜索时间占总游泳时间的百分比和目标象限穿过次数增加,体质量、双侧海马质量和海马相对质量增加(P0.05或P0.01)。结论:早期游泳运动能减轻慢性温和应激抑郁大鼠的学习记忆的损害,其中低强度和中等强度运动训练作用效果最佳。  相似文献   

4.
Alterations in the expression of genes encoding interleukins IL-1α, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) were studied in the rat brain in a model of a depressive disorder. We found that the signs of a depressionlike condition in rats, subjected to eight weeks of chronic mild unpredictable stress, were accompanied by increased IL-1α and IL-1β mRNAs levels in the neocortex, hippocampus, and brainstem and a decreased IL-6 mRNA level in the brainstem as compared to those observed in the control animals. We did not find any changes in the level of TNF-α mRNA. We suggest that region-specific alterations in the expression of cytokine genes, specifically, the most prominent increase in IL-1β expression, reflects greater vulnerability of chronically stressed animals to neuroinflammatory processes.  相似文献   

5.
Malathion is a pesticide with high potential for human exposure. However, it is possible that during the malathion metabolism, there is generation of reactive oxygen species (ROS) and malathion may produce oxidative stress in intoxicated rats. The present study was therefore undertaken to determine malathion-induced lipid peroxidation (LPO), protein carbonylation and to determine whether malathion intoxication alters the antioxidant system in brain rats. Malathion was administered intraperitoneally in the acute and chronic protocols in the doses of 25, 50, 100 and 150 mg malathion/kg. The results showed that LPO in brain increased in both protocols. The increased oxidative stress resulted in an increased in the activity of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), observed in cortex, striatum in the acute malathion protocol and hippocampus in the chronic malathion protocol. Our results demonstrated that malathion induced oxidative stress and modulated SOD and CAT activity in selective brain regions.  相似文献   

6.
Hereditary fructose intolerance is an autosomal recessive disorder characterized by the accumulation of fructose in tissues and biological fluids of patients. The disease results from a deficiency of aldolase B, responsible for metabolizing fructose in the liver, kidney, and small intestine. We investigated the effect of acute fructose administration on oxidative stress and neuroinflammatory parameters in the cerebral cortex of 30-day-old Wistar rats. Animals received subcutaneous injection of sodium chloride (0.9 %) (control group) or fructose solution (5 μmol/g) (fructose group). One hour later, the animals were euthanized and the cerebral cortex was isolated. Oxidative stress (levels of thiobarbituric acid-reactive substances (TBA-RS), carbonyl content, nitrate and nitrite levels, 2′,7′-dihydrodichlorofluorescein (DCFH) oxidation, glutathione (GSH) levels, as well as the activities of catalase (CAT) and superoxide dismutase (SOD)) and neuroinflammatory parameters (TNF-α, IL-1β, and IL-6 levels and myeloperoxidase (MPO) activity) were investigated. Acute fructose administration increased levels of TBA-RS and carbonyl content, indicating lipid peroxidation and protein damage. Furthermore, SOD activity increased, whereas CAT activity was decreased. The levels of GSH, nitrate, and nitrite and DCFH oxidation were not altered by acute fructose administration. Finally, cytokines IL-1β, IL-6, and TNF-α levels, as well as MPO activity, were not altered. Our present data indicate that fructose provokes oxidative stress in the cerebral cortex, which induces oxidation of lipids and proteins and changes of CAT and SOD activities. It seems therefore reasonable to propose that antioxidants may serve as an adjuvant therapy to diets or to other pharmacological agents used for these patients, to avoid oxidative damage to the brain.  相似文献   

7.
Free radicals mediated damage of phospholipids, proteins and nucleic acids results in subsequent neuronal degeneration and cell loss. Aim of this study was to evaluate the existence of lipid and protein oxidative damage and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in various rat brain structures 24 h after lateral fluid percussion brain injury (LFPI). Parietal cortex, hippocampus, thalamus, entorhinal cortex, and cerebellum from the ipsilateral hemisphere were processed for analyses of the thiobarbituric acid reactive substances (TBARS) and oxidized protein levels as well as for the SOD and GSH-Px activities. Immunohistochemical detection of oxidized proteins was also performed. Results of our study showed that LFPI caused significant oxidative stress in the parietal cortex and hippocampus while other brain regions tested in this study were not oxidatively altered by LFPI. GSH-Px activities were significantly increased in the parietal cortex and hippocampus, while the SOD activities remained unchanged following LFPI in all regions investigated.  相似文献   

8.
The effects of 1 h/day restraint in plastic tubes for 24 days on the levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), tryptophan (TP), and noradrenaline (NA) in six regions of rat brain 20 h after the last restraint period were investigated. The levels of 5-HT, 5-HIAA, and NA but not TP increased in several regions. The effects of 1 h of immobilization on both control and chronically restrained rats were also studied. Immobilization per se did not alter brain 5-HT, 5-HIAA, and TP levels, but decreased NA in the pons plus medulla oblongata and hypothalamus. However, immobilization after chronic restraint decreased 5-HT, increased 5-HIAA, and decreased NA in most brain regions in comparison with values for the chronically restrained rats. We suggest that chronic restraint leads to compensatory increases of brain 5-HT and NA synthesis and sensitizes both monoaminergic systems to an additional acute stress. These changes may affect coping with stress demands.  相似文献   

9.
1. In depression, psychiatric symptoms are frequently associated with impaired cardiovascular function and perhaps also increased risk for cancer diseases. Pathophysiological basis of this comorbidity is not clearly understood. Molecular events involved, particularly factors modified by chronic stress exposure, may only be evaluated in animal models of depression.2. Present experiments were aimed to study parameters related to cardiovascular system (tyrosine hydroxylase (TH) gene expression in adrenal glands) and carcinogenesis (retinoic acid receptors in the liver) in the chronic mild stress model of depression.3. Chronic mild stress induced a rise in adrenal TH gene expression in both male and female rats. Gender dependent changes were found in retinoic acid receptor binding with stress-induced activation in females but not males. Ovariectomized animals exhibited higher retinoic acid receptor binding, slightly elevated TH mRNA levels and failed to respond to chronic mild stress exposure with further increase in TH mRNA levels. Similarly, chronic mild stress induced an anhedonic state manifested by decreased sucrose preference in control but not ovariectomized rats.4. Presented data document that central neurochemical and behavioral changes in animals exposed to chronic mild stress model of depression are associated with changes in adrenal TH gene expression and with gender dependent changes in retinoic acid receptor status in the liver. Such alterations may participate in the development of pathological changes and could participate on increased risk for cardiovascular and oncologic comorbidity in depressive patients.  相似文献   

10.
Multigenerational evaluation was made in rats on exposure to high fluoride (100 and 200 ppm) to assess neurotoxic potential of fluoride in discrete areas of the brain in terms of lipid peroxidation and the activity of antioxidant enzyme system. The rats were given fluoride through drinking water (100 and 200 ppm) and maintained subsequently for three generations. Fluoride treatment significantly increased the lipid peroxidation and decreased the activity of antioxidant enzymes viz, catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and glutathione level in first-generation rats and these alterations were more pronounced in the subsequent second and third-generation rats in both the doses tested. Decreased feed and water consumption, litter size and organ (brain) somatic index, marginal drop in body growth rate and mortality were observed in all three generations. Decreased antioxidant enzyme activity and increased malondialdehyde levels found in the present study might be related to oxidative damage that occurs variably in discrete regions of the brain. Results of this study can be taken as an index of neurotoxicity in rats exposed to water fluoridation over several generations.  相似文献   

11.
We studied the role of oxidative stress and the effect of vinpocetine (1.5, 3 or 6 mg/kg) and piracetam (150 or 300 mg/kg) in acute demyelination of the rat brain following intracerebral injection of ethidium bromide (10 μl of 0.1%). Results: ethidium bromide caused (1) increased malondialdehyde (MDA) in cortex, hippocampus and striatum; (2) decreased total antioxidant capacity (TAC) in cortex, hippocampus and striatum; (3) decreased reduced glutathione (GSH) in cortex and hippocampus (4); increased serum nitric oxide and (5) increased striatal (but not cortical or hippocampal) acetylcholinesterase (AChE) activity. MDA decreased in striatum and cortex by the lower doses of vinpocetine or piracetam but increased in cortex and hippocampus and in cortex, hypothalamus and striatum by the higher dose of vinpocetine or piracetam, respectively along with decreased TAC. GSH increased by the higher dose of piracetam and by vinpocetine which also decreased serum nitric oxide. Vinpocetine and piracetam displayed variable effects on regional AChE activity.  相似文献   

12.
Although several advances have occurred over the past 20 years concerning refining the use and administration of electroconvulsive therapy to minimize side effects of this treatment, little progress has been made in understanding the mechanisms underlying its therapeutic or adverse effects. This work was performed in order to determine the level of oxidative damage at different times after the maintenance electroconvulsive shock (ECS). Male Wistar rats (250–300 g) received a protocol mimicking therapeutic of maintenance or simulated ECS (Sham) and were subsequently sacrificed immediately after, 48 h and 7 days after the last maintenance electroconvulsive shock. We measured oxidative damage parameters (thiobarbituric acid reactive species for lipid peroxidation and protein carbonyls for protein damage, respectively) in hippocampus, cortex, cerebellum and striatum. We demonstrated no alteration in the lipid peroxidation and protein damage in the four structures studied immediately after, 48 h and 7 days after a last maintenance electroconvulsive shock. Our findings, for the first time, demonstrated that after ECS maintenance we did protocol minimal oxidative damage in the brain regions, predominating absence of damage on the findings.  相似文献   

13.
We examined effects of a plant polyphenolic compound, curcumin, against fluoride-induced oxidative stress in the rat brain. Five experimental groups of male rats (10 animals each) were compared. Animals of these experimental groups were treated with curcumin (10 and 20 mg/kg body mass), vitamin C (10 mg/kg), and sample solvent (0.5 ml) for a week prior to sodium fluoride intoxication. After treatment, rats of the experimental groups, except for the normal control group, were intoxicated with sodium fluoride (600 ppm through drinking water) for a week. Then, brains were collected and homogenized, and activities of superoxide dismutase and catalase and levels of reduced glutathione and lipid peroxidation final products were evaluated in the brain tissue homogenates. Treatment with curcumin prior to fluoride intoxication significantly normalized the above biochemical parameters; the intensity of protective effects of 20 mg/kg curcumin was close to that of vitamin C.  相似文献   

14.
Venlafaxine is an approved antidepressant that is an inhibitor of both serotonin and norepinephrine transporters. Medical treatment with oral venlafaxine can be beneficial to depression due to reducing free radical production in the brain and medulla of depression- induced rats because oxidative stress may a play role in some depression. We investigated the effect of venlafaxine administration and experimental depression on lipid peroxidation and antioxidant levels in cortex brain, medulla and erythrocytes of rats. Thirty male wistar rats were used and were randomly divided into three groups. Venlafaxine (20 mg/kg) was orally supplemented to depression-induced rats constituting the first group for four week. Second group was depression-induced group although third group was used as control. Depressions in the first and second groups were induced on day zero of the study by chronic mild stress. Brain, medulla and erythrocytes samples were taken from all animals on day 28. Depression resulted in significant decrease in the glutathione peroxidase (GSH-Px) activity and vitamin C concentrations of cortex brain, glutathione (GSH) value of medulla although their levels were increased by venlafaxine administration to the animals of depression group. The lipid peroxidation levels in the three tissues and nitric oxide value in cortex brain elevated although their levels were decreased by venlafaxine administration. There were no significant changes in cortex brain vitamin A, erythrocytes vitamin C, GSH-Px and GSH, medulla vitamin A, GSH and GSH-Px values. In conclusion, cortex brain within the three tissues was most affected by oxidative stress although there was the beneficial effect of venlafaxine in the brain of depression-induced rats on investigated antioxidant defenses in the rat model. The treatment of depression by venlafaxine may also play a role in preventing oxidative stress. Abstract of the paper was submitted in 1st Ion Channels and Oxidative Stress Congress, 14–16 September 2006, Isparta, Turkey.  相似文献   

15.
The antioxidant capabilities of phosphatidylethanolamine plasmalogen (PlsEtn), in vivo, against lipid peroxidation were investigated via acute phosphine (PH3) administration in rats. Oxidative stress was assessed from measures of malondialdehyde and various enzyme activities, while NMR analyses of lipid and aqueous tissue extracts provided metabolic information in cerebellum, brainstem, and cortex. Brainstem had the highest basal [PlsEtn], and showed only moderate PH3-induced oxidative damage with no loss of ATP. The lowest basal [PlsEtn] was observed in cortex, where PH3 caused a 51% decrease in [ATP]. The largest oxidative effect occurred in cerebellum, but [ATP] was unaffected. Myo-inositol+ethanolamine pretreatment attenuated all PH3 effects. Specifically, the pretreatment attenuated the ATP decrease in cortex, and elevated brain [PlsEtn] in the cerebellum, nearly abolishing the cerebellar oxidative effects. Our data suggest a high basal [PlsEtn], or the capacity to synthesize new ethanolamine lipids (particularly PlsEtn) may protect against PH3 toxicity.  相似文献   

16.
The role of oxidative stress in electroconvulsive therapy-related effects is not well studied. The purpose of this study was to determine oxidative stress parameters in several brain structures after a single electroconvulsive seizure or multiple electroconvulsive seizures. Rats were given either a single electroconvulsive shock or a series of eight electroconvulsive shocks. Brain regions were isolated, and levels of oxidative stress in the brain tissue (cortex, hippocampus, striatum and cerebellum) were measured. We demonstrated a decrease in lipid peroxidation and protein carbonyls in the hippocampus, cerebellum, and striatum several times after a single electroconvulsive shock or multiple electroconvulsive shocks. In contrast, lipid peroxidation increases both after a single electroconvulsive shock or multiple electroconvulsive shocks in cortex. In conclusion, we demonstrate an increase in oxidative damage in cortex, in contrast to a reduction of oxidative damage in hippocampus, striatum, and cerebellum.  相似文献   

17.
Repeated low-dose exposure to carbofuran exerts its neurotoxic effects by non-cholinergic mechanisms. Emerging evidence indicates that oxidative stress plays an important role in carbofuran neurotoxicity after sub-chronic exposure. The purpose of the present study is to evaluate the role of mitochondrial oxidative stress and dysfunction as a primary event responsible for neurotoxic effects observed after sub-chronic carbofuran exposure. Carbofuran was administered to rats at a dose of 1 mg/kg orally for a period of 28 days. There was a significant inhibition in the activity of acetylcholinesterase (66.6%) in brain samples after 28 days of carbofuran exposure. Mitochondrial respiratory chain functions were assessed in terms of MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) reduction and activity of succinate dehydrogenase in isolated mitochondria. It was observed that carbofuran exposure significantly inhibited MTT reduction (31%) and succinate dehydrogenase activity (57%). This was accompanied by decrease in low-molecular weight thiols (66.6%) and total thiols (37.4%) and an increase in lipid peroxidation (43.7%) in the mitochondria isolated from carbofuran-exposed rat brain. The changes in mitochondrial oxidative stress and functions were associated with impaired cognitive and motor functions in the animals exposed to carbofuran as compared to the control animals. Based on these results, it is clear that carbofuran exerts its neurotoxicity by impairing mitochondrial functions leading to oxidative stress and neurobehavioral deficits.  相似文献   

18.
Haloperidol is an antipsychotic drug that exerts its' antipsychotic effects by inhibiting dopaminergic neurons. Although the exact pathophysiology of haloperidol extrapyramidal symptoms are not known, the role of reactive oxygen species in inducing oxidative stress has been proposed as one of the mechanisms of prolonged haloperidol-induced neurotoxicity. In the present study, we evaluate the protective effect of alpha lipoic acid against haloperidol-induced oxidative stress in the rat brain. Sprague Dawley rats were divided into control, alpha lipoic acid alone (100 mg/kg p.o for 21 days), haloperidol alone (2 mg/kg i.p for 21 days), and haloperidol with alpha lipoic acid groups (for 21 days). Haloperidol treatment significantly decreased levels of the brain antioxidant enzymes super oxide dismutase and glutathione peroxidase and concurrent treatment with alpha lipoic acid significantly reversed the oxidative effects of haloperidol. Histopathological changes revealed significant haloperidol-induced damage in the cerebral cortex, internal capsule, and substantia nigra. Alpha lipoic acid significantly reduced this damage and there were very little neuronal atrophy. Areas of angiogenesis were also seen in the alpha lipoic acid-treated group. In conclusion, the study proves that alpha lipoic acid treatment significantly reduces haloperidol-induced neuronal damage.  相似文献   

19.
目的:观察创伤后应激障碍(PTSD)对慢性不可预见性应激(CUS)抑郁模型的影响。方法:采用足底电击的方法建立大鼠创伤后应激障碍模型。成年雄性S-D大鼠40只随机分为四组(n=10):对照组(C组)、PTSD组、CUS组、PTSD+CUS组(P+C组)。在1、7、14、21天测量大鼠体重,并行糖水偏好和强迫游泳实验,在7、14、21天做条件性恐惧实验。结果:与C组相比,CUS组和P+C组体重增加缓慢,PTSD组体重正常。CUS组于第21天出现糖水消耗比例降低,强迫游泳不动时间增加。P+C组于第14天即出现上述抑郁表现。条件性恐惧实验中,PTSD组与PTSD+CUS组僵直时间显著增加,CUS组无明显变化。结论:创伤后应激障碍的动物更易产生抑郁表现。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号