首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Streptozotocin (STZ) induced diabetic model has been widely used to study the effects of diabetes mellitus (DM) on male infertility, but it remains unclear whether the responses in this model are due to hyperglycemia or STZ per se. This study was designed to investigate the mechanism of STZ on testicular dysfunction. In the present study, sperm characteristics, serum testosterone, steroidogenic enzymes (StAR and 3β-HSD), and the vimentin apical extension of sertoli cells decreased significantly in the STZ group compared with those in the normal controls (p < 0.05), while Johnsen’s score, testicular lipid peroxidation, spermatogenic cell apoptosis, and the expressions of NF-κB and Wnt4 significantly increased (p < 0.05). Insulin replacement mainly restored the decreased serum testosterone and steroidogenic enzymes, but not other parameters. The results indicated that spermatogenic dysfunction in the early stage of STZ-induced diabetic rats was due to direct STZ cytotoxicity to sertoli cells, which could be regulated by Wnt4 and NF-κB, while steroidogenic dysfunction might be a direct or indirect consequence of insulin deficiency. The results suggested that STZ-induced diabetic model, at least in the early stage, is not suitable to study the diabetes-related spermatogenic dysfunction.  相似文献   

2.
Perturbations in endoplasmic reticulum (ER) homeostasis, including depletion of Ca2 + or altered redox status, induce ER stress due to protein accumulation, misfolding and oxidation. This activates the unfolded protein response (UPR) to re-establish the balance between ER protein folding capacity and protein load, resulting in cell survival or, following chronic ER stress, promotes cell death. The mechanisms for the transition between adaptation to ER stress and ER stress-induced cell death are still being understood. However, the identification of numerous points of cross-talk between the UPR and mitogen-activated protein kinase (MAPK) signalling pathways may contribute to our understanding of the consequences of ER stress. Indeed, the MAPK signalling network is known to regulate cell cycle progression and cell survival or death responses following a variety of stresses. In this article, we review UPR signalling and the activation of MAPK signalling pathways in response to ER stress. In addition, we highlight components of the UPR that are modulated in response to MAPK signalling and the consequences of this cross-talk. We also describe several diseases, including cancer, type II diabetes and retinal degeneration, where activation of the UPR and MAPK signalling contribute to disease progression and highlight potential avenues for therapeutic intervention. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

3.
Isabelle Cornez 《FEBS letters》2010,584(12):2681-2688
A variety of immunoregulatory signals to effector T cells from monocytes, macrophages and regulatory T cells act through cyclic adenosine monophosphate. In the effector T cell, the protein kinase A (PKA) type I isoenzyme localizes to lipid rafts during T cell activation and modulates directly the proximal events that take place after engagement of the T cell receptor. The most proximal target for PKA phosphorylation is C-terminal Src kinase (Csk), which initiates a negative signal pathway that fine-tunes the T cell activation process. The A kinase anchoring protein Ezrin colocalizes PKA and Csk by forming a supramolecular signaling complex consisting of PKA, Ezrin, Ezrin/radixin/moesin (ERM) binding protein of 50 kDa (EBP50), phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (GEMs) (PAG) and Csk.  相似文献   

4.

Background

Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function.

Methods

A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out.

Results

TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization.

Conclusions

TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON.

General significance

Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号