首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vertical distribution of larvae of the sea urchin Strongylocentrotus intermedius in conditions of superficial desalination was studied under laboratory conditions. In the earlier stages of development, the larvae accumulated in the water column zone with a salinity below the optimal level. The long-term observations of the larval accumulations revealed the deceleration of, and abnormalities in, the development and death of the larvae. The larvae at the pre-settling stages changed their behavior: when they reached layers of a salinity unfavorable for their survival or development, the larvae did not enter them and instead moved down instead. Obviously, S. intermedius larvae are only capable of actively choosing their position within the water column with the salinity gradient at the later stages of development.  相似文献   

2.
Temperature (25, 22, 16, and 12°C) and salinity (32–14‰) effects on the development of the low-boreal holothurianEupentacta fraudatrix were investigated. By studying the desalination resistance of adult holothurians,E. fraudatrix was shown to be a stenohaline species. The lower salinity limit at which both the larvae and adults survived was 22‰. Fertilization and development to the stage of free-swimming blastula occurred at the bottom. Embryogenesis, a critical stage of development, was successfully completed at a salinity of 32–26‰ and temperature of 22–16°C. The fertilization and development of a free-swimming blastula proved to be most resistant to temperature changes. The blastulae that developed at lowered temperatures (16–12°C) were capable of further development and settling at the same temperatures, which is likely associated with the peculiarities of the species range. If the early development proceeded at a higher temperature (22°C), the larvae failed to adapt to and perished from sharp temperature decreases at later stages of development. Thus, the lecithotrophic larva and a short period of larval development in the pelagial larvae (3–3.5 days from fertilization to settlement) ofE. fraudatrix are caused by the stenohalinity and environmental conditions of the species and, in turn, contribute to the fact that the young animals settle in the vicinity of their parents.  相似文献   

3.
Organisms that migrate between rivers and the sea inevitably pass through estuarine habitats. Despite the potential importance of salinity and temperature fluctuations for metabolic adaptation, little is known about the impact of environmental changes in estuaries on the survival of residents. Ayu (Plecoglossus altivelis) is a migratory fish that inhabits estuarine brackish water in its early life stages. The recent decline in the abundance of populations ascending into rivers is of concern for local biodiversity. The present study aims to elucidate the ecological processes that determine the early success of Ayu larvae under variable environmental conditions. The effects of salinity and water temperature on the endogenous growth of newly hatched larvae from the same brood were examined experimentally based on morphological and metabolic characteristics. High salinity and high water temperature together appeared to require more energy for larval osmoregulation, resulting in the acceleration of yolk depletion and reduced growth of the notochord. Increasing the osmoregulative cost during the yolk-sac stage resulted in the faster induction of a state of starvation. Seawater is considered to have an adverse effect on the survival of newly hatched larvae, as it lowers the efficiency of foraging and predator avoidance due to an energetic tradeoff. More attention should be paid to the significance of estuarine environments involving brackish waters to ensure the early survival of amphidromous fish such as Ayu.  相似文献   

4.
卵形鲳鲹胚胎及早期仔鱼耗氧量的研究   总被引:2,自引:0,他引:2  
运用SKW-3微量呼吸仪对卵形鲳鲹(Trachinotus ovatus)胚胎和早期仔鱼的耗氧量进行测定,研究温度、盐度及pH的变化对胚胎耗氧量和Cu2+、Cd2+等重金属离子对早期仔鱼的耗氧量的影响。结果表明:在(25±0.5)℃条件下,卵形鲳鲹胚胎和早期仔鱼的耗氧量均随着发育时间的延长总体上呈上升的趋势,胚胎耗氧量在出膜前达到最大值,其中以原肠期和出膜期耗氧量变化最为显著。胚胎耗氧量随着温度、盐度、pH的增大而逐渐升高,在水温25℃、盐度35和pH为8时耗氧量到达最大值,随后逐渐减小。随着Cu2+浓度的升高,早期仔鱼耗氧量呈先增大后减小,在0.01mg·L-1时耗氧率最大:胚胎耗氧量随着Cd2+浓度的升高而逐渐降低。  相似文献   

5.
The response of early juveniles of the haarder Liza haematocheila (= Mugil soiuy) to changes of water salinity, and the growth and survival of larvae in water of different levels of salinity were studied. The capacity of adaptation of the larvae of the haarder to fresh water is manifested at early ages. Normally developing six-day-old larvae of the haarder easily endure the transfer from seawater (17–19‰) to brackish water (5‰) and a day later, to fresh water. The resistance of larvae to abrupt decreases in salinity increases with age. Directly transferred to fresh water, all 6–12-day old larvae perish, compared to only 8–30% of 2–3-week old larvae (those retarded in growth). In the course of raising, the larvae have tended to survive better in brackish water (5‰). At decreasing salinity, the growth rate, the content of defatted dry matter, and the content of lipids increase. In fresh water, the stock lipids (triacylglycerols) are accumulated more intensively. With consideration of the original and published data, the problem of formation of the osmoregulatory system in the ontogenesis of mugilids is discussed.  相似文献   

6.
Narita  Tetsuya 《Hydrobiologia》2001,449(1-3):141-148
The larval stages of the mud prawn Upogebia africana were reared in the laboratory, from hatchings of females collected in the Mgazana estuary, South Africa. The larvae were tested for the combined effects of temperature and salinity in a factorial designed experiment, using 3 females and 2 replicates of 10 larvae per combination. Combinations were made from 5 temperatures (15, 20, 25, 30 and 35 °C) and 4 salinities (15, 25, 35 and 45). Results were tested by ANOVA and multiple regression was applyed to generate contour models by polynomial equation. Results showed that U. africana develops optimally in near to sea water salinity at around 25 °C, with slightly wider tolerance to low salinity in zoeal stage I, and with increased moult rate at lower salinity in late stages. A comparison with similar experimental results for other species is made, namely in view of the life cycle strategies for dispersal and return migration.  相似文献   

7.
We investigated the behavior of larvae of the sea urchin Strongylocentrotus intermedius at the blastula and early pluteus stages in the water column at a temperature of 20, 22, and 23.5°C and in the presence of copper in concentrations of 0.01 and 0.02 mg/l. In clean sea water, at all tested temperatures, sea urchin larvae preferred the subsurface layer to where they rose from the bottom of the vessel to form dense aggregations. In water supplemented with copper, the behavior of larvae at 20 and 22°C was not different from that in clean water. An increase in temperature to 23.5°C and the addition of copper altered the behavior of the larvae; they did not leave near-bottom water, did not rise to the surface, although they continued moving.  相似文献   

8.
The population dynamics of Ephydra hians Say final instar larvae and pupae were compared over a two year period in rocky littoral habitats of two alkaline saline lakes in the western Great Basin. Relative abundance increased from 1983 to 1984 at Mono Lake (California), during dilution from ca. 90 to 80 g 1-1 TDS (total dissolved solids). In contrast, relative abundance decreased over the same period at Abert Lake (Oregon), accompanied by a dilution of salinity from ca. 30 to 20 g l-1 and a marked increase in the number and abundance of other benthic macroinvertebrate species. These observations are consistent with a hypothesis that proposes biotic interactions limit E. hians abundance at low salinity, and physiological stress limits abundance at high salinity.Oviposition extends from early spring to early fall. Mixed instars present throughout this period indicates multivoltine population dynamics with overlapping generations. The standing stock biomass of final instars increases exponentially in late spring and peaks in late summer or early fall. Pupae increase in proportional representation and abundance from a spring minimum to a fall maximum. The body size of adults and pupae cycle seasonally from a spring maximum to a fall minimum, and may be related to either or both food limitation, or water temperature.  相似文献   

9.
Shallow-water coastal areas suffer frequent reductions in salinity due to heavy rains, potentially stressing the organisms found there, particularly the early stages of development (including pelagic larvae). Individual adults and newly hatched larvae of the gastropod Crepipatella peruviana were exposed to different levels of salinity stress (32(control), 25, 20 or 15), to quantify the immediate effects of exposure to low salinities on adult and larval behavior and on the physiological performance of the larvae. For adults we recorded the threshold salinity that initiates brood chamber isolation. For larvae, we measured the impact of reduced salinity on velar surface area, velum activity, swimming velocity, clearance rate (CR), oxygen consumption (OCR), and mortality (LC50); we also documented the impact of salinity discontinuities on the vertical distribution of veliger larvae in the water column. The results indicate that adults will completely isolate themselves from the external environment by clamping firmly against the substrate at salinities ≤24. Moreover, the newly hatched larvae showed increased mortality at lower salinities, while survivors showed decreased velum activity, decreased exposed velum surface area, and decreased mean swimming velocity. The clearance rates and oxygen consumption rates of stressed larvae were significantly lower than those of control individuals. Finally, salinity discontinuities affected the vertical distribution of larvae in the water column. Although adults can protect their embryos from low salinity stress until hatching, salinities <24 clearly affect survival, physiology and behavior in early larval life, which will substantially affect the fitness of the species under declining ambient salinities.  相似文献   

10.
Damaging effects of UVB in conjunction with other stressors associated with global change are well‐established, with many studies focused on vulnerable early life stages and immediate effects (e.g., mortality, developmental abnormalities). However, for organisms with complex life cycles, experiences at one life stage can have carry‐over effects on later life stages, such that sublethal effects may mediate later vulnerability to further stress. Here, we exposed embryos in benthic egg masses of the New Zealand intertidal gastropod Siphonaria australis to treatments of either periodic stress (e.g., elevated UVB, salinity, and water temperature mimicking tidepool conditions in which egg masses are commonly found during summer) or control conditions (low UVB, ambient salinity, and water temperatures). Although there was high mortality from stressed egg masses, 24% of larvae hatched successfully. We then exposed the hatching larvae from both egg mass treatments to different combinations of water temperature (15 or 20 °C) and light (high UVB or shade) 12 h per day for 10 days. The most stressful larval conditions of 20 °C/high UVB resulted in low survival and stunted growth. Carry‐over effects on survival were apparent for shaded larvae exposed to elevated temperature, where those from stressed egg masses had 1.8× higher mortality than those from control egg masses. Shaded larvae were also larger and had longer velar cilia if they were from control egg masses, independent of larval temperature. These results demonstrate that previous experience of environmental stress can influence vulnerability of later life stages to further stress, and that focus on a single life stage will underestimate cumulative effects of agents of global change.  相似文献   

11.
The palaeontological, geochemical and mineralogical records of core GNS84-C106 were analysed in order to reconstruct palaeohydrological changes and palaeoproductivity patterns in the Gulf of Salerno for the last 34 kyr. This approach, including compositional analysis of planktonic and benthic assemblages, gave an insight into the relationships between continental, sea surface and bottom environmental changes. The main source of variability of planktonic and benthic assemblages is related respectively to sea surface temperature and palaeobathymetry. Interrelated changes in surface salinity, nutrients, density gradient in the water column and organic fluxes at the bottom act as a secondary factor controlling the composition of both planktonic and benthic assemblages. The highest palaeoproductivity rates were reached during an interval spanning from late glacial to Middle Holocene, in conditions of enhanced continental run-off. During the Early and Middle Holocene, reduced surface salinity and density stratification were also coupled with the development of a deep chlorophyll maximum and enhanced flux or organic matter at the bottom. From about 6.5 kyr B.P. onward, a sharp reduction in palaeoproductivity took place, coupled with an increase in surface salinities.  相似文献   

12.
Synopsis We tested the hypothesis that the mechanism of retention of tomcod, Microgadus tomcod, larvae and juveniles in the well-mixed part of the St. Lawrence Estuary is similar to that of sympatric smelt, Osmerus mordax, larvae who actively migrate to the surface during flood tides and to the bottom during ebb tides so as to minimize net downstream displacement. The vertical distribution of tomcod larvae and juveniles was documented during two 98-h sampling series at 2 anchor stations in June and July, 1986. An hourly index of the center of mass of fish in the water column calculated to take into account daytime net avoidance in surface waters suggested that tomcod remained deep in the water column and that their accumulation at the head of the estuary was the result of passive upstream transport by net residual circulation rather than active tidal migrations. For both series, depth of fish was inversely related to density of the water suggesting that the buoyancy of fish influenced their vertical distribution. Tomcod larvae and juveniles were advected by tidal currents. In June, larger larvae were found at low slack water indicating that they were located upstream of smaller larvae. In July, larger juveniles were located downstream of smaller juveniles, the difference in mean length between low and high slack water attaining 20 mm. Ontogenetic buoyancy changes may be responsible for these differences in the vertical distribution of tomcod. Comparisons of the early life-history stages of tomcod and smelt retained in the same area under the same hydrodynamical conditions indicate that more than one mechanism permits retention in a well-mixed estuary and that the observed species-specific patterns of vertical distribution are not simply interpretable as adaptations to retention.  相似文献   

13.
The effect of decreased salinity on the limpetsCollisella dorsuosa, C. versicolor, C. radiata, andNotoacmea concinna (Mollusca, Gastropoda) is studied at early stages of development. It is shown that, for normal development from fertilization to the veliger stage, the salinity must be not less than 22–24‰. A decrease in salinity depressed the behavior of larvae. At earlier stages, the larvae were less sensitive to changes in salinity than at later stages. At the same time, veligers were better able to adapt to changes in salinity than trochophores. The vertical water distribution of larvae depended on their age. Two days after fertilization, the larvae sank down to start a benthic life. It is proposed that the narrow tolerance range of littoral limpet larvae to changes in salinity is connected with the fact that they spend a relatively small part of their life in plankton.  相似文献   

14.
Trials conducted under glasshouse conditions showed that control of Otiorhynchus sulcatus larvae in strawberry plants can be effective using Steinernema carpocapsae and Heterorhabditis megidis, given that temperature and moisture extremes are avoided. In field experiments, the double line T-Tape® drip irrigation system performed better than the single line T-Tape® system, effectively distributing the nematodes along and across strawberry raised beds, and placing them close to the root zone where O. sulcatus larvae feed. As soil temperatures are satisfactory for nematode infectivity from late spring to early autumn, nematode applications were aimed at late instar larvae during spring, and early instar larvae during summer. Late summer field treatment with S. carpocapsae induced 49.5% reduction of the early instar larvae, and field application of the same nematode species in late spring resulted in 65% control of late instar larvae. In the same trial, spring application of H. megidis caused 26% mortality of late instar larvae of O. sulcatus.  相似文献   

15.
Synopsis Prejuvenile red hake, Urophycis chuss, that had reached the developmental interval where they normally descend from the planktonic to the benthic environment, were tested for their responses to experimental thermoclines. Laboratory thermoclines were created that simulated natural field conditions of late summer/ early fall (20°C at the surface and 10°C at the bottom). Prejuveniles did not descend immediately through the thermocline; rather, they remained in the water column at temperatures above 15°C. Results indicated that fish in the sea that do eventually reach the bottom despite the presence of a thermocline, must undergo an acclimation period while descending through the thermocline. The timing of prejuvenile descent may depend on a variety of factors including optimal growth conditions, susceptibility to predation, and competition for resources.  相似文献   

16.
During the spawning season of the estuarine prawn Metapenaeus bennettae (Racek & Dall), laboratory and field experiments were conducted to examine the combined effects of temperature and salinity on hatching success of eggs and the survival, growth and development of larvae. Response surface analysis showed that optimal levels of temperature and salinity for maximum hatching success varied depending on conditions during spawning. Similarly, temperature and salinity conditions that produced maximum survival and growth of larvae depended on conditions during rearing prior to experimental temperature/salinity treatments. At the onset of feeding, larvae showed the lowest tolerance to changes in temperature and salinity. Supplementary feeding experiments in the laboratory, and survival rates in field experiments indicated that starvation was a more potent factor than the effects of temperature and salinity in determining survival through the protozoeal larval stages. Late larval stages were relatively indifferent to the effects of temperature and salinity. It is suggested that, during early development, adaptive response to the prevailing physical conditions enhances survival in an estuarine environment.  相似文献   

17.
Adaptivity to short-term and long-term changes in water temperature and salinity was studied in larvae of the bivalve mollusk Mytilus trossulus. It was shown that water temperature of 4°C mostly suppressed growth and development of larvae. A temperature of 20°C promoted an enhanced larval growth and development. Though a temperature of 20°C caused enhanced larval growth, the temperature was not optimal, while its effect caused quality diversity of larval development, owing to the difference in their growth rates. Such diversity was not observed at moderate temperatures of 10 and 15°C. At 20°C, fast-growing mussel larvae were very sensitive to temperature drops. Growth of slowly-growing individuals did not depend on temperature in the range of 10 to 20°C. Daily temperature variations by 3–8°C did not markedly affect growth and development of the larvae. A continuous 24-h exposure to temperature drops by 3–8°C did not influence these very important physiological characteristics either. A salinity drop down to 8‰ exerted an adverse effect only on early larvae. Later on, the larvae showed their ability to adapt to such a strong desalination. The negative effect of reduced salinity (to 8‰) upon mussel larvae was increased at a temperature increase to 20°C.  相似文献   

18.
The combined effects of temperatures of 14, 17, 20, 22, and 25°C and salinities of 36–12‰ on embryos and larvae of the sand dollar Scaphechinus mirabilis was studied. Embryonic development is the most sensitive stage in the early ontogenesis of S. mirabilis. It is completed at a temperature of 14–20°C in a salinity range of 36–24‰ and at temperature of 22°C to 26‰. The fertilization proceeds in wider ranges of temperature and salinity. Among the swimming larvae, blastulae showed the greatest resistance to variations of these environmental factors. All the larvae survived at a temperature of 14–22°C and a salinity of 36–20‰, and more than 70% of them at 18‰. The pluteus I is the most vulnerable stage; probably this is related to the formation of the larval skeleton and transition to phytoplankton feeding. The survival of larvae at the age of 20 days was 100% at 14–22° C and a salinity of 36–24‰, most of them survived at 14–20°C and a salinity 18‰. The temperature 25 ° C is the most damaging for early development of S. mirabilis. The duration of development of that species lasts 28.5–29 days at 20°C and a salinity of 32.2–32.6‰. At 20 and 22°C, the larvae settled and completed metamorphosis more quickly if sand from the parental habitat was present. The larvae did not settle during the experiment (14 days) at 14 ° C and in the absence of sand.  相似文献   

19.
Xie  Ping  Iwakuma  Toshio  Fujii  Koichi 《Hydrobiologia》1998,368(1-3):83-90
Population dynamics of Chaoborus flavicans larvae of various instars was studied from November 1986 to December 1987 in a eutrophic, fish-free pond, Japan. First and 2nd instar larvae were observed from late April to late October, indicating a reproductive period of about half a year. C. flavicans overwintered in the 4th instar larvae. In water column samples, total density of all instars was 680–23680 m-2, and pupal density 0–2600 m-2; larvae of the 1st, 2nd, and 3rd instars showed 5–6 density peaks in 1987, suggesting that 5–6 generations occur during a year (peaks of the 4th instar larvae were not clear, probably due to their longer development than those of younger instars). In sediment samples, no 1st and 2nd instar larvae were found, 3rd instar larvae were found occasionally but density of the 4th instar larvae was 280–18600 m-2, and pupal density varied between 0–502 m-2. Fouth instar larvae accumulated in sediment in the cold season and in the water column in the warm season; high temperature and low oxygen concentration were the most important factors limiting the distribution of larvae in the sediment in summer in the NIES pond. The dry weight of total C. flavicans larvae was 0.08–4.2 g m-2 in sediment samples and 24–599 μg l-1 (0.10–2.40 g m-2) in water column samples. Comparisons of maximum densities in the NIES pond in different years and in waters of different trophic status show that density is generally higher in eutrophic than in oligotrophic habitats. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Under laboratory conditions the development of the starfish Asterias amurensis Lütken from Vostok Bay (Sea of Japan) was studied at 14 and 17°C. At 14°C and a salinity of 31.6–32.6, ciliated coeloblastulae hatched from egg envelopes 19 h after fertilization. At this temperature the development proceeded slowly and stopped at the stage of bipinnaria. At 17°C and normal salinity of seawater, the development of A. amurensis was successful. The swimming blastula appeared in 14 h. It took 30.5 h for the embryos to reach the gastrula stage. The larvae began swimming in a horizontal position with the apical tip ahead. The dipleurula appeared at 60 h. These larvae began feeding. At 71 h after the beginning of development, the early bipinnaria has developed. In the larva, the edged ciliated band, the preoral plate, and the anal plate were already formed. At the age of 4.2 days, the larvae reached the stage of bipinnaria and the brachiolaria stage developed by 26–28 days after fertilization. The larvae had three identical brachiolar arms with attachment papillae on their tips and an attachment disk. In 37–44 days (at 17°C) the pelagic phase of A. amurensis development was completed by the attachment of larvae to the bottom plates and termination of metamorphosis. Most likely, the specificity to a substrate is not expressed in the brachiolaria of A. amurensis. They can settle on almost any hard substrate which is coated with a bacterial film. The newly settled juvenile starfish had five well-developed arms and moved using their ambulacral podia.Original Russian Text Copyright © 2005 by Biologiya Morya, Kashenko.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号