首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The interaction of 2,9-dimethyl-1,10-phenanthroline (neocuproine or NC) and its copper complex with Ehrlich ascites tumor cells was studied. NC is frequently used as a negative control in studies of in vitro DNA degradation by copper phenanthroline and has also found use as a potential inhibitor of damage from oxidative stress in biological systems. NC inhibited Ehrlich cell growth in monolayer culture over 48 h treatment by 50% at 0.05 nmol/10(5) cells. Addition of 5- to 100-fold ratios of CuCl2 to NC (at 0.035 nmol NC/10(5) cells) produced progressively more growth inhibition. Addition of 1:0.5 ratios of NC to CuCl2 over the range of NC concentrations 0.08-0.2 nmol/10(5) cells/mL resulted in DNA single-strand breakage during 1-h treatments as measured by DNA alkaline elution. Concomitant addition of catalase or dimethyl sulfoxide (DMSO) inhibited DNA strand scission, while superoxide dismutase enhanced breakage. Catalase and DMSO also inhibited induction of membrane permeability by the copper complex of NC. These cellular effects apparently result from the intracellular generation of hydroxyl radical from H2O2. NC facilitated the uptake of copper into cells, though it was initially bound as a copper-histidine-like complex. The internalized copper was reduced to Cu(I), bound mostly as (NC)2Cu(I). To explain the (NC)2Cu-dependent generation of hydroxyl radical, it is hypothesized that glutathione successfully competes for Cu(I), converting it to a redox-active form that can catalyze the reduction of molecular oxygen to .OH. Model studies support this view. Radical scavengers did not reverse growth inhibition produced by NC or NC + CuCl2.  相似文献   

2.
Copper in the presence of excess 1,10-phenanthroline, a reducing agent, and H2O2 causes DNA base damage as well as strand breakage. We have reported in previous work that a strong chemiluminescence was followed by DNA base damage in this system, which is characteristic of guanine. In the present work, the mechanism of the chemiluminescence was studied. Results show that the luminescence was inhibited by all three classes of reactive oxygen species (*OH, O2-, (1)O2) scavengers to different degrees. Singlet oxygen scavengers showed the most powerful inhibition while the other two classes of scavengers were relatively weaker. The emission intensity in D2O was 3-fold that in H2O. Comparing the effect of scavengers on the luminescence of DNA with that of dGMP, the ratio of inhibition was similar. On the other hand, DNA breakage analysis showed that inhibition by the singlet oxygen scavenger NaN3 of strand breakage was strong and comparable to that of the scavengers of the two oxygen radicals. The results suggest that singlet oxygen may be a major factor for the chemiluminescence of guanine, while DNA strand breakage may be caused by many active species.  相似文献   

3.
Nitroxides block DNA scission and protect cells from oxidative damage.   总被引:1,自引:0,他引:1  
The protective effect of cyclic stable nitroxide free radicals, having SOD-like activity, against oxidative damage was studied by using Escherichia coli xthA DNA repair-deficient mutant hypersensitive to H2O2. Oxidative damage induced by H2O2 was assayed by monitoring cell survival. The metal chelator 1,10-phenanthroline (OP), which readily intercalates into DNA, potentiated the H2O2-induced damage. The extent of in vivo DNA scission and degradation was studied and compared with the loss of cell viability. The extent of DNA breakage correlated with cell killing, supporting previous suggestions that DNA is the crucial cellular target of H2O2 cytotoxicity. The xthA cells were protected by catalase but not by superoxide dismutase (SOD). Both five- and six-membered ring nitroxides, having SOD-like activity, protected growing and resting cells from H2O2 toxicity, without lowering H2O2 concentration. To check whether nitroxides protect against O2.(-)-independent injury also, experiments were repeated under hypoxia. These nitroxides also protected hypoxic cells against H2O2, suggesting alternative modes of protection. Since nitroxides were found to reoxidize DNA-bound iron(II), the present results suggest that nitroxides protect by oxidizing reduced transition metals, thus interfering with the Fenton reaction.  相似文献   

4.
《Free radical research》2013,47(4-6):241-258
The asorbic acid (AH?) auto-oxidation rates catalyzed by copper chelates of 1,10-phenanthroline (OP) or by iron chelates of bleomycin (BLM) are only slightly higher than the oxidation rates catalyzed by the metal ions. AH? oxidation in the presence of DNA is accompanied by degradation of the DNA. The rates of DNA scission by the metal chelates are markedly higher than the rates induced by the free metal ions. AH? oxidation is slowed down in the presence of DNA which forms ternary complexes with the chelates. The ternary complexes react slowly with AH? but induce DNA double strand breaks more efficiently than the free metal chelates. With OP, DNA is degraded by the reaction of the ternary complex, DNA-(OP)2Cu(I), withH2O2

AH? oxidation in the presence of DNA was biphasic, showing a marked rate increase after DNA was cleaved. We suggest that this sigmoidal pattern of the oxidation curves reflects the low initial oxidative activity of the ternary complexes, accelerating as DNA is degraded.

Using O2?produced by pulse radiolysis as a reductant, we found that AH? oxidation with (OP)2Cu(II) induced more DNA double strand breaks per single strand break than bipyridine-copper.

The site specific DNA damaging reactions indicated by these results are relevant to the mechanism of cytotoxic activities of bleomycin and similar antibiotics or cytotoxic agents.  相似文献   

5.
The mechanism of cytotoxicity on liver carcinoma Bel-7402 cells induced by copper-1,10-phenanthroline, Cu(OP)2, has been studied. Cell viability and apoptotic rate were examined in cells treated with Cu(OP)2 or Cu2+ alone. It was found that the apoptosis induced by Cu(OP)2 could not be induced by Cu2+ or OP alone in our experimental conditions. Total copper content in cells was measured by atomic absorption spectrophotometry, and the abnormal elevation of intracellular copper transported by lipophilic OP ligand may play the role of initial factor in the apoptosis, which caused subsequent redox state changes in cells. Intracellular levels of reactive oxygen species (ROS) were detected by fluorescent probe 2′,7′-dichlorofluorescein diacetate (DCFH-DA). Reduced (GSH) and total glutathione (GSSG + GSH) were determined by High-performance liquid chromatography (HPLC) after derivatization, and the ratios of GSH/GSSG were subsequently calculated. The overproduction of ROS and the decreased GSH/GSSG ratio were observed in cells which represented the occurrence of oxidative stress in the apoptosis. Oxidative DNA damage was also found in cells treated with Cu(OP)2 in the early stage of the apoptosis, and it suggests that the activation of DNA repair system may be involved in the pathway of the apoptosis induced by Cu(OP)2.  相似文献   

6.
Oxidative stress induced by a copper-thiosemicarbazone complex   总被引:1,自引:0,他引:1  
Copper thiosemicarbazones cause considerable oxidative stress. This effect may be related to their cytotoxicity. In the present work, the chemical and cellular properties of a new ligand, pyridoxal thiosemicarbazone (H2T), and its copper(II) chelate (CuT) are assessed. CuT is toxic to cultured Ehrlich ascites tumor cells, producing nearly complete cell kill at drug/cell ratios of 2.5-4 nmol/10(5) cells in a monolayer culture over a 48-h treatment period. This concentration is at least 1 order of magnitude lower than those required for a similar degree of cytotoxicity by H2T or CuCl2. The following observations support the view that activated oxygen species are generated by interaction of CuT with Ehrlich cells: (1) Room-temperature electron spin resonance spectroscopy and atomic absorption measurements show rapid cellular uptake and CuT-thiol adduct formation. (2) Cellular thiol content is reduced. (3) High levels of DNA strand scission result from 1-h treatments of cells by concentrations of CuT that cause growth inhibition and toxicity. (4) The extent of strand scission can be increased by addition of superoxide dismutase and decreased by catalase or DMSO in the treatment medium. Catalase and DMSO do not inhibit the toxic effect of CuT. This suggests that DNA damage is not responsible for inhibition of cell proliferation by CuT.  相似文献   

7.
Metallothionein (MT) has been shown to protect DNA against cleavage induced by a variety of mutagenic agents. The mechanism has been attributed to its ability to either chelate transitional metals that participate in the Fenton reaction, or scavenge free radicals by means of the abundant cystenyl residues of the proteins. In the present study, the protective action of MT against DNA cleavage by the copper-1,10-phenanthroline [(OP)(2)Cu(+)] complex was studied in situ. At 0.1 microM, MT inhibited the (OP)(2)Cu(+) induced DNA cleavage by about 50% (IC(50) approximately 0.1 microM). At 2.5 microM, the cleavage activity was completely inhibited. Similar to MT, cysteine can protect against DNA cleavage by (OP)(2)Cu(+) (IC(50) of approximately 3 mM), however, its action was 1500-fold less efficient than MT. The combined action of MT and cysteine was additive. Reduced glutathione (1 and 10 mM) did not protect the (OP)(2)Cu(+) induced DNA cleavage. Sodium azide could inhibit the cleavage only at high concentrations (IC(40) approximately 25 mM). Spectrophotometric analysis showed that MT can inhibit the formation of the DNA[(OP)(2)Cu(+)] complex possibly by chelating Cu. It can also cause a dissociation of the complex after it was formed. In the later case, the mechanism through which MT protects against the DNA cleavage might occur when MT fitted in closely with the complex, competing with the hydroxyl groups of the nucleotides base for Cu, which, in turn, terminate the Fenton-like free radical reaction.  相似文献   

8.
J M Veal  K Merchant    R L Rill 《Nucleic acids research》1991,19(12):3383-3388
Copper in the presence of excess 1,10-phenanthroline, a reducing agent, and molecular oxygen causes cleavage of DNA with a preference for T-3',5'-A-steps, particularly in TAT triplets. The active molecular species is commonly thought to be the bis-(1,10-phenanthroline)Cu(I) complex, (Phen)2Cu(I), regardless of the reducing agent type. We have found that (Phen)2Cu(I) is not the predominant copper complex when 3-mercaptopropionic acid (MPA) or 2-mercaptoethanol are used as the reducing agents, but (Phen)2Cu(I) predominates when ascorbate is used as the reducing agent. Substitution of ascorbate for thiol significantly enhances the rate of DNA cleavage by 1,10-phenanthroline + copper, without altering the sequence selectivity. We show that (Phen)2Cu(I) is the complex responsible for DNA cleavage, regardless of reducing agent, and that 1,10-phenanthroline and MPA compete for copper coordination sites. DNA cleavage in the presence of ascorbate also occurs under conditions where the mono-(1,10-phenanthroline)Cu(I) complex predominates (1:1 phenanthroline:copper ratio), but preferential cleavage was observed at a CCGG sequence and not at TAT sequences. The second phenanthroline ring of the (Phen)2Cu(I) complex appears essential for determining the T-3',5'-A sequence preferences of phenanthroline + copper when phenanthroline is in excess.  相似文献   

9.
Oxidative damage to DNA includes diverse lesions in the sugar-phosphate backbone. The chemical "nuclease" bis(1,10-phenanthroline)copper complex [(OP)(2)Cu] is believed to generate a mixture of direct oxidative strand breaks and C1'-oxidized abasic sites (2-deoxyribonolactone; dL). We found that, under our conditions, the lesions produced by (OP)(2)Cu (50 microM) in synthetic duplex DNA were predominantly dL, accompanied by approximately 30% direct strand breaks with 3'-phosphates. For enzymatic studies, (OP)(2)Cu was used to introduce damage with limited sequence-selectivity, while photolysis of a site-specific 2'-deoxyuridine-1'-t-butyl ketone generated dL at a defined position. The results showed that Ape1, the major human abasic endonuclease, catalyzed 5'-incision of dL sites, but acted at least 10-fold less effectively to remove the 3'-phosphates at direct strand breaks. Kinetic analysis of Ape1 incision using the site-specific dL substrate revealed the same k(cat) for dL and regular (glycosylase-generated) abasic sites, but with K(m) approximately five-fold higher for dL substrate. The efficiency of Ape1 acting on dL, and the abundance of this enzyme in vivo, indicate that dL sites in vivo would be rapidly processed by the endonuclease. The recent observation that Ape1-cleaved dL sites can covalently trap DNA polymerase beta during the abasic excision process suggests that efficient incision of dL by Ape1 may potentiate further problems in DNA repair.  相似文献   

10.
The asorbic acid (AH-) auto-oxidation rates catalyzed by copper chelates of 1,10-phenanthroline (OP) or by iron chelates of bleomycin (BLM) are only slightly higher than the oxidation rates catalyzed by the metal ions. AH- oxidation in the presence of DNA is accompanied by degradation of the DNA. The rates of DNA scission by the metal chelates are markedly higher than the rates induced by the free metal ions. AH- oxidation is slowed down in the presence of DNA which forms ternary complexes with the chelates. The ternary complexes react slowly with AH- but induce DNA double strand breaks more efficiently than the free metal chelates. With OP, DNA is degraded by the reaction of the ternary complex, DNA-(OP)2Cu(I), withH2O2

AH- oxidation in the presence of DNA was biphasic, showing a marked rate increase after DNA was cleaved. We suggest that this sigmoidal pattern of the oxidation curves reflects the low initial oxidative activity of the ternary complexes, accelerating as DNA is degraded.

Using O2-produced by pulse radiolysis as a reductant, we found that AH- oxidation with (OP)2Cu(II) induced more DNA double strand breaks per single strand break than bipyridine-copper.

The site specific DNA damaging reactions indicated by these results are relevant to the mechanism of cytotoxic activities of bleomycin and similar antibiotics or cytotoxic agents.  相似文献   

11.
The metal chelators 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline (neocuproine) showed distinct abilities to prevent hydroxyl radical formation from hydrogen peroxide and Cu+ or F2(2+) (Fenton reaction) as determined by electron spin resonance. o-Phenanthroline prevented both Fe- and Cu-mediated Fenton reactions whereas neocuproine only prevented the Cu-mediated Fenton reaction. Because only 1,10-phenanthroline but not neocuproine prevented DNA strand-break formation in hydrogen peroxide-treated mammalian fibroblasts it appears that the Fe-mediated, as compared to the Cu-mediated, intranuclear Fenton reaction is responsible for DNA damage.  相似文献   

12.
Lygodium japonicum fern accumulates copper in the cell wall pectin   总被引:2,自引:0,他引:2  
The present work reports the results of a study on the growth kinetics and characterization of matrix polysaccharides in the cell walls of Lygodium japonicum prothallium grown in the presence of copper (Cu). When the prothallium was cultured in the media containing 0.2 mM or 0.4 mM CuSO(4), it showed a rapid accumulation of Cu with a maximum uptake of Cu measured in the cells up to 20 d of culture. The maximum rate of Cu uptake into the prothallium was greater for 0.4 mM Cu-treated cells (17.2 micromol g(-1) DW) than for 0.2 mM Cu-treated cells (3.2 micromol g(-1) DW). Cell walls were isolated from both untreated control and Cu-treated cells and then extracted sequentially with cyclohexane-trans-1,2-diaminetetra-acetate (CDTA), Na(2)CO(3), 1 M KOH, and 4 M KOH. The amount of pectin solubilized from 0.4 mM Cu-treated cell walls decreased to 53% of its level in the control, whereas the amount of hemicellulose solubilized from the Cu-treated cell walls represented 82% of that from control cell walls. When the polysaccharides were fractionated by anion-exchange chromatography into four carbohydrate components, considerable increases in fractions PI-3 and PII-3 eluted with 0.5 M NaCl were observed in CDTA-soluble (PI) and Na(2)CO(3)-soluble (PII) pectic polymers from Cu-treated cell walls. Fractions PI-3 and PII-3 were composed predominantly of uronic acid (more than 71% of total sugars). Approximately 66% of Cu within the cell walls was released from the 0.4 mM Cu-treated cells with the endo-pectate-lyase treatment, suggesting that most of the Cu that accumulated into the Lygodium prothallium is tightly bound to the homogalacturonan of the cell wall pectin.  相似文献   

13.
Previous experiments on alloxan diabetogenicity suggest that alloxan increases the permeability of B-cell plasma membranes by generation of noxious free radicals. Whether the radicals are generated intra- or extracellularly has however been disputed. To test if extracellularly generated free radicals could decrease trypan blue exclusion of dispersed islet cells, a radical-generating solution of xanthine oxidase/hypoxanthine was employed. The solution increased dye uptake by cells in the cell suspension. Superoxide dismutase and catalase but not scavengers of hydroxyl radicals protected against the increase in dye uptake. Both L- and D-glucose protected the cells from injury. It is concluded that extracellularly generated free radicals induce damage to the plasma membrane of islet cells. The result strengthens the hypothesis of plasma membrane damage by extracellularly generated free radicals as the primary event in alloxan diabetogenicity and may provide a link for explanation of damage caused by islet inflammation in juvenile diabetes.  相似文献   

14.
Reactive oxygen species play an important role in the mediation of cell killing. But the mechanistic links between reactive oxygen species (ROS) and cell death remains unclear. There was a speculation that ROS, especially hydroxyl radicals can induce necrosis but not apoptosis in cells treated with copper-1,10-phenanthroline, IICu(OP)(2). In this paper, liver carcinoma cell line (Bel-7402) was treated with IICu(OP)(2) and its effect was examined by several means. Cells were found to undergo changes characteristic of apoptosis. Hoechst staining showed apoptotic body appeared in the cells induced by IICu(OP)(2). When DNA extracted from the cells treated with IICu(OP)(2) was analyzed by agarose gel electrophoresis it generated 'ladder' pattern of discontinuous DNA fragments. Sub-G(1) peak was detected in treated cells. Furthermore, two different flow cytometric methods were used, each allowing us to relate the apoptotic cells to the position the cell-cycle position. Apoptosis induced by IICu(OP)(2) was limited to G(1)-phase cells. Using cyclin analysis, the expression of cyclin E in G(1) was blocked. Thus, it was concluded that IICu(OP)(2) can induce G(1)-phase specific apoptosis in Bel-7402.  相似文献   

15.
New binary copper(II) complexes [Cu(4-mphen)2(NO3)]NO3·H2O (1), [Cu(5-mphen)2 (NO3)]NO3·H2O (2), the known complex [Cu(dmphen)2(NO3)]NO3 (3) and [Cu(tmphen)2 (NO3)]NO3·H2O (4) - (4-mphen: 4-methyl-1,10-phenanthroline, 5-mphen: 5-methyl-1,10-phenanthroline, dmphen: 4,7-dimethyl-1,10-phenanthroline, tmphen: 3,4,7,8-tetramethyl-1,10-phenanthroline), have been synthesized and characterized by CHN analysis, ESI-MS, FTIR and single-crystal X-ray diffraction techniques. Interaction of these complexes with calf thymus DNA (CT-DNA) has been investigated by absorption spectral titration, ethidium bromide (EB) and Hoechst 33,258 displacement assay and thermal denaturation measurement. These complexes cleaved pUC19 plasmid DNA in the absence and presence of an external agent. Notably, in the presence of H2O2 as an activator, the cleavage abilities of these complexes are obviously enhanced at low concentration. Addition of hydroxyl radical scavengers like DMSO shows significant inhibition of the DNA cleavage activity of these complexes. BSA quenching mechanism was investigated with regard to the type of quenching, binding constant, number of binding locations and the thermodynamic parameters. The experimental results suggested that the probable quenching mechanism was an unusual static process and hydrophobic forces play a dominant role. The CT-DNA and BSA binding efficiencies of these complexes follow the order: 4 > 3 > 1 > 2. Furthermore, in vitro cytotoxicities of these complexes on tumor cells lines (Caco-2, MCF-7 and A549) and healthy cell line (BEAS-2B) showed that these complexes exhibited anticancer activity with low IC50 values. The effect of hydrophobicity of the methyl-substituted phenanthrolines on DNA and protein binding activities of these complexes is discussed.  相似文献   

16.
Rat hepatocytes treated in vitro with A2RA, an angiotensin II receptor antagonist, displayed increased level of DNA-strand breaks as determined by alkaline elution, without an appreciable increase in cytotoxicity as determined by a trypan blue dye exclusion assay at harvest. The alkaline elution profile appeared to have two components: a rapidly eluting component detected in the first fraction collected (often associated with DNA from dead or dying cells), followed by a more slowly eluting component detected in the subsequent fractions. Further analysis of hepatocytes treated with A2RA by pulsed-field gel electrophoresis and neutral elution revealed significant levels of DNA double-strand breaks. Electron microscopy (EM) showed pronounced damage to mitochondria; although cell blebbing was seen using both EM and light microscopy, the plasma and nuclear membranes appeared intact when examined by EM. Cellular ATP levels decreased precipitously with increasing doses of A2RA, falling to less than 10% of control values at a dose of 0.213 mM A2RA, a concentration showing 100% relative viability by trypan blue at harvest. Thus, whereas in our experience trypan blue dye exclusion accurately reflects cytotoxicity induced by the majority of test agents, in this rather unusual case, trypan blue did not accurately reflect compound-induced cytotoxicity at harvest since there was no concurrent loss of membrane integrity. However, when hepatocytes treated with A2RA were incubated for either 3 h or 20 h in the absence of compound, a sharp, dose-dependent decline in viability was observed using trypan blue dye exclusion. Together with the initial, dose-dependent drop in the alkaline elution curve, these data suggest that the observed DNA double-strand breaks arose as a consequences of endonucleolytic DNA degradation associated with cytotoxicity, rather than by a direct compound-DNA interaction. Since DNA double-strand breaks behave under alkaline denaturing conditions as two single-strand breaks and can therefore produce increases in the alkaline-elution slope values, a necessary criteria for a valid positive result in this assay is that cytotoxicity by trypan blue dye exclusion will not be greater than 30%. Our data, however, indicate that interpretation of the elution assay as a test for genotoxicity can still be confounded by the failure of the trypan blue dye exclusion assay to reflect cytotoxicity in the unusual instance when there is no concurrent, immediate loss of membrane integrity.  相似文献   

17.
Nitroxide free radicals have been previously shown to function as superoxide dismutase (SOD) mimics and to protect bacterial and mammalian cells against oxidative damage, particularly from superoxide and hydrogen peroxide. Although nitroxides are generally considered to be non-toxic nor mutagenic, there is no agreement regarding their potential adverse effect. Some toxic effects were observed upon using high concentration of six-membered ring derivatives. Conflicting evidence has also been reported regarding the mutagenic activity of nitroxides toward Salmonella typhimurium. It was also demonstrated that nitroxides exert two opposing effects on exonuclease III deficient cells of Escherichia coli upon exposure to naphthoquinones. The attempts to use nitroxides as contrast agents in nuclear magnetic resonance imaging (MRI) and as a new class of anti-oxidants underscore the need to examine their potential adverse effects. Since nitroxides protected xthA cells from DNA scission caused by H2O2, it was anticipated that they would provide even greater t protection for recA DNA repair-deficient cells of E. coli, which are more sensitive to H2O2-induced oxidative stress. The results of the present study showed that: (1) nitroxides exert bactericidal and bacteriostatic effects on recA but not on xthA or wild-type E. coli K12 cells, (b) nitroxides and H2O2 act synergistically on recA cells, both under aerobic and hypoxic conditions; (c) the nitroxide-induced toxicity in recA cells and the synergistic effect with H2O2 were not accompanied by a decrease in the cellular level of reduced glutathione; (d) TEMPAMINE protected against DNA scission induced by H2O2 and 1,10-o-phenanthroline chelate of Cu(II) in xthA cells, but potentiated DNA double-strand breakage in recA cells.  相似文献   

18.
After a 3-hour incubation of the Ehrlich ascite tumor cells in buffered Hanks solution, without glucose and oxygen, the extensive cell injuries were observed. The time-course of appearance of these injuries was as follows: cell blebbing, staining of the cells with trypan blue, and then their staining with ethidium bromide. The DNA degradation registered with fluorometric method coincided in time with cell staining with trypan blue. All injuries (except DNA degradation) were delayed at pH 6.0 compared with those at pH 7.3. Glucose added to the cell suspension greatly protected the cells from these injuries, although DNA degradation at pH 6.0 in these conditions was a little higher than that at pH 7.3.  相似文献   

19.
THE CYTOTOXIC PRINCIPLE OF THE PHYTOFLAGELLATE PRYMNESIUM PARVUM   总被引:1,自引:0,他引:1       下载免费PDF全文
The cytotoxic events leading to lysis induced in Ehrlich ascites tumor (E.A.) cells by Prymnesium parvum cell extracts were followed microscopically and measured quantitatively as changes in E.A. cell volume, uptake of trypan blue, and release of macromolecular constituents from the cells. Cell swelling was the most immediate response to P. parvum cytotoxin, while cell death and lysis were later events distinguished by a decline in cell volume, uptake of dye, and appearance of cellular macromolecules free in the incubation medium. The pH and temperature were shown to affect the outcome of the lytic sequence. At either low pH or temperature, cells swelled but did not lyse until the pH or temperature was raised. On the other hand, cells swollen at the higher pH or temperature could be protected from lysis by lowering either the pH or the temperature.  相似文献   

20.
Oxidative DNA damage has been implicated in diverse biological processes including mutagenesis, carcinogenesis, aging, radiation effects, and chemotherapy. We examined the in vitro effect of low concentrations of Cu(II) or H2O2 alone and in combination on supercoiled plasmid DNA. As much as 10(-2) M Cu(II) or 10(-2) M H2O2 alone did not break the DNA. However, a mixture of 10(-6) M Cu(II) plus 10(-5) M H2O2 produced strand breaks and inactivated transforming ability. Strand breakage was proportional to incubation time, temperature, and Cu(II) and H2O2 concentrations. Abasic sites were not detected. Strand breakage was inhibited by metal chelators, catalase, and by high levels of free radical scavengers implying that Cu(II), Cu(I), H2O2, and .OH were involved in the reaction. The extent of DNA strand breakage was not affected by superoxide dismutase indicating that superoxide was not a major contributor to the DNA damage. DNA sequence analysis demonstrated that hot piperidine-sensitive DNA lesions were produced preferentially at sites of 2 or more adjacent guanosine residues. This sequence specificity was observed with Cu(II) plus H2O2 but not with Cu(I) alone. Polyguanosine sequence specificity for DNA damage induction appears to be unique among simple chemical systems. This reaction may be important in mechanisms of oxidative damage in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号