首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanosensory hair cells of the vertebrate cochlea offer an excellent developmental system to study cell-fate specification, and to gain insight into the many human neurological deficits which result in a hearing loss, by affecting primarily the hair cells. Therefore, there is great interest in studying the molecular mechanisms that regulate their specification and differentiation. Recent studies, based mostly on loss-of-function experiments that target the role of Notch signaling and basic helix-loop-helix genes in inner-ear development have indicated that they can regulate mechanosensory hair cell-fate specification and their initial differentiation.  相似文献   

2.
Molecular mechanisms of flower development: an armchair guide   总被引:15,自引:0,他引:15  
  相似文献   

3.
4.
During asymmetric cell division, protein determinants are segregated into one of the two daughter cells. The Numb protein acts as a segregating determinant during both mouse and Drosophila development. In flies, Numb localizes asymmetrically and is required for cell-fate specification in the central and peripheral nervous systems, as well as during muscle and heart development. Whether its asymmetric segregation is important to the performance of these functions is not firmly established. Here, we demonstrate that Numb acts both in a localization-dependent and in a localization-independent manner. We have generated numb mutants that affect only the asymmetric localization of the protein during mitosis. We demonstrate that asymmetric segregation of Numb into one of the two daughter cells is absolutely essential for cell-fate specification in the Drosophila peripheral nervous system. Numb localization is also essential in MP2 neuroblasts in the central nervous system and during muscle development. Surprisingly, in dividing ganglion mother cells or during heart development, Numb function is independent of its ability to segregate asymmetrically in mitosis. Our results suggest that two classes of asymmetric cell division exist, each with different requirements for asymmetric inheritance of cell-fate determinants.  相似文献   

5.
Angioblasts are multipotent progenitor cells that give rise to arteries or veins . Genetic disruption of the gridlock gene perturbs the artery/vein balance, resulting in generation of insufficient numbers of arterial cells . However, within angioblasts the precise biochemical signals that determine the artery/vein cell-fate decision are poorly understood. We have identified by chemical screening two classes of compounds that compensate for a mutation in the gridlock gene . Both target the VEGF signaling pathway and reveal two downstream branches emanating from the VEGF receptor with opposing effects on arterial specification. We show that activation of ERK (p42/44 MAP kinase) is a specific marker of early arterial progenitors and is among the earliest known determinants of arterial specification. In embryos, cells fated to contribute to arteries express high levels of activated ERK, whereas cells fated to contribute to veins do not. Inhibiting the phosphatidylinositol-3 kinase (PI3K) branch with GS4898 or known PI3K inhibitors, or by expression of a dominant-negative form of AKT promotes arterial specification. Conversely, inhibition of the ERK branch blocks arterial specification, and expression of constitutively active AKT promotes venous specification. In summary, chemical genetic analysis has uncovered unanticipated opposing roles of PI3K and ERK in artery/vein specification.  相似文献   

6.
Mammalian neural progenitor cells divide asymmetrically to self-renew and produce a neuron by segregating cytosolic Numb proteins primarily to one daughter cell. Numb signaling specifies progenitor over neuronal fates but, paradoxically, also promotes neuronal differentiation. Here we report that ACBD3 is a Numb partner in cell-fate specification. ACBD3 and Numb proteins interact through an essential Numb domain, and the respective loss- and gain-of-function mutant mice share phenotypic similarities. Interestingly, ACBD3 associates with the Golgi apparatus in neurons and interphase progenitor cells but becomes cytosolic after Golgi fragmentation during mitosis, when Numb activity is needed to distinguish the two daughter cells. Accordingly, cytosolic ACBD3 can act synergistically with Numb to specify cell fates, and its continuing presence during the progenitor cell cycle inhibits neuron production. We propose that Golgi fragmentation and reconstitution during cell cycle differentially regulate Numb signaling through changes in ACBD3 subcellular distribution and represent a mechanism for coupling cell-fate specification and cell-cycle progression.  相似文献   

7.
Notch function in the vasculature: insights from zebrafish, mouse and man   总被引:17,自引:0,他引:17  
Vascular development entails multiple cell-fate decisions to specify a diverse array of vascular structures. Notch proteins are signaling receptors that regulate cell-fate determination in a variety of cell types. The finding that Notch genes are robustly expressed in the vasculature suggests roles for Notch in guiding endothelial and associated mural cells through the myriad of cell-fate decisions needed to form the vasculature. In fact, mice with defects in genes encoding Notch, Notch ligands, and components of the Notch signaling cascade invariably display vascular defects. Human Notch genes are linked to Alagille's Syndrome, a developmental disorder with vascular defects, and CADASIL, a cerebral arteriopathy. Studies in zebrafish, mice and humans indicate that Notch works in conjunction with other angiogenic pathways to pattern and stabilize the vasculature. Here, we will focus on established functions for Notch in vascular remodeling and arterial/venous specification and more speculative roles in vascular homeostasis and organ-specific angiogenesis.  相似文献   

8.
Primordial germ cells follow a characteristic developmental path that is manifested in the specialized regulation of basic cell functions and behaviour. Recent studies in zebrafish have greatly enhanced our understanding of the mode of specification of primordial germ cells, cell-fate maintenance and the migration of these cells towards their target, the gonad, where they differentiate into gametes.  相似文献   

9.
WNT proteins are secreted morphogens that are required for basic developmental processes, such as cell-fate specification, progenitor-cell proliferation and the control of asymmetric cell division, in many different species and organs. In blood and immune cells, WNT signalling controls the proliferation of progenitor cells and might also affect the cell-fate decisions of stem cells. Recent studies indicate that WNT proteins also regulate effector T-cell development, regulatory T-cell activation and dendritic-cell maturation. WNT signalling seems to function as a universal mechanism in leukocytes to establish a pool of undifferentiated cells for further selection, effector-cell maturation and terminal differentiation. WNT signalling is therefore subject to strict molecular control, and dysregulated WNT signalling is implicated in the development of haematological malignancies.  相似文献   

10.
11.
The patterning of epidermal hairs in Arabidopsis--updated   总被引:1,自引:0,他引:1  
  相似文献   

12.
Vulval cell-fate determination in Caenorhabditis elegans requires the action of numerous gene products, including components of the Ras/Raf/MAPK signaling cascade and the hox gene lin-39. sem-4 encodes a zinc finger protein with previously characterized roles in fate specification of sex myoblasts, coelomocytes, and multiple neuronal lineages in C. elegans (M. Basson and R. Horvitz, 1996, Genes Dev. 10, 1953-1965). By characterizing three new alleles of sem-4 that we identified in a screen for vulval-defective mutants, we determined that loss of sem-4 activity results in abnormal specification of the secondary vulval cell lineages. We analyzed sem-4 interactions with other genes involved in vulval differentiation and determined that sem-4 does not function directly in the Ras-mediated signal transduction pathway but acts in close association with and upstream of lin-39 to promote vulval cell fate. We demonstrate that sem-4 regulates lin-39 expression and propose that sem-4 is a regulator of lin-39 in the vulval cell-fate determination pathway that may act to link lin-39 to incoming signals.  相似文献   

13.
Until recently, protein kinase GSK3 (glycogen synthase kinase 3), an essential component for cell-fate specification, had been considered a constitutively activated enzyme subject to developmentally regulated inhibition through hierarchical, linear signaling paths. Data from various systems now indicate more complex scenarios involving activating as well as inhibiting circuits, and the differential formation of multi-protein complexes that antagonistically affect GSK3 function.  相似文献   

14.
Notch (N) signaling is used for cell-fate determination in many different developmental contexts. Here, we show that the master control gene for sex determination in Drosophila melanogaster, Sex-lethal (Sxl), negatively regulates the N-signaling pathway in females. In genetic assays, reducing Sxl activity suppresses the phenotypic effects of N mutations, while increasing Sxl activity enhances the effects. Sxl appears to negatively regulate the pathway by reducing N protein accumulation, and higher levels of N are found in Sxl(-) clones than in adjacent wild-type cells. The inhibition of N expression does not depend on the known downstream targets of Sxl; however, we find that Sxl protein can bind to N mRNAs. Finally, our results indicate that downregulation of the N pathway by Sxl contributes to sex-specific differences in morphology and suggest that it may also play an important role in follicle cell specification during oogenesis.  相似文献   

15.
Notch signaling is essential for cell-fate specification in metazoans, and dysregulation of the pathway leads to a variety of human diseases including heart and vascular defects as well as cancer. Glycosylation of the Notch extracellular domain has emerged as an elegant means for regulating Notch activity, especially since the discovery that Fringe is a glycosyltransferase that modifies O-fucose in 2000. Since then, several other O-glycans on the extracellular domain have been demonstrated to modulate Notch activity. Here we will describe recent results on the molecular mechanisms by which Fringe modulates Notch activity, summarize recent work on how O-glucose, O-GlcNAc, and O-GalNAc glycans affect Notch, and discuss several human genetic disorders resulting from defects in Notch glycosylation.  相似文献   

16.
17.
"Normal" development requires a finely tuned equilibrium between cell differentiation and cell proliferation. Important issues in development include whether the cell cycle controls the cell-fate determination and whether cell identity in turn regulates cell-cycle progression. Although, these issues are of general biological relevance, stereotyped Drosophila neural lineages are particularly suited to address these questions and have provided insights into the links between cell-cycle progression and cell-fate specification.  相似文献   

18.
Making or breaking the heart: from lineage determination to morphogenesis   总被引:14,自引:0,他引:14  
Srivastava D 《Cell》2006,126(6):1037-1048
The cues governing cardiac cell-fate decisions, cardiac differentiation, and three-dimensional morphogenesis are rapidly being elucidated. Several themes are emerging that are relevant for childhood and adult heart disease and the growing field of stem cell biology. This review will consider our current understanding of cardiac cell-fate determination and cardiogenesis--largely derived from developmental studies in model organisms and human genetic approaches--and examine future implications for diagnosis, prevention, and treatment of heart disease in the young and old.  相似文献   

19.
Signaling via the receptor tyrosine kinase (RTK)/Ras pathway promotes tissue growth during organismal development and is increased in many cancers [1]. It is still not understood precisely how this pathway promotes cell growth (mass accumulation). In addition, the RTK/Ras pathway also functions in cell survival, cell-fate specification, terminal differentiation, and progression through mitosis [2-7]. An important question is how the same canonical pathway can elicit strikingly different responses in different cell types. Here, we show that the HMG-box protein Capicua (Cic) restricts cell growth in Drosophila imaginal discs, and its levels are, in turn, downregulated by Ras signaling. Moreover, unlike normal cells, the growth of cic mutant cells is undiminished in the complete absence of a Ras signal. In addition to a general role in growth regulation, the importance of cic in regulating cell-fate determination downstream of Ras appears to vary from tissue to tissue. In the developing eye, the analysis of cic mutants shows that the functions of Ras in regulating growth and cell-fate determination are separable. Thus, the DNA-binding protein Cic is a key downstream component in the pathway by which Ras regulates growth in imaginal discs.  相似文献   

20.
Inhibitors of Wnt signaling promote normal development and prevent cancer by restraining when and where the Wnt pathway is activated. ROR proteins, a class of Wnt-binding receptor tyrosine kinases, inhibit Wnt signaling by an unknown mechanism. To clarify how RORs inhibit the Wnt pathway, we examined the relationship between Wnts and the sole C. elegans ROR homolog, cam-1, during C. elegans vulval development, a Wnt-regulated process. We found that loss and overexpression of cam-1 causes reciprocal defects in Wnt-mediated cell-fate specification. Our molecular and genetic analyses revealed that the CAM-1 extracellular domain (ECD) is sufficient to non-autonomously antagonize multiple Wnts, suggesting that the CAM-1/ROR ECD sequesters Wnts. A sequestration model is supported by our findings that the CAM-1 ECD binds to several Wnts in vitro. These results demonstrate how ROR proteins help to refine the spatial pattern of Wnt activity in a complex multicellular environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号