首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have subcloned a portion of the Escherichia coli mtlA gene encoding the hydrophilic, C-terminal domain of the mannitol-specific enzyme II (mannitol permease; molecular mass, 68 kilodaltons [kDa]) of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system. This mtlA fragment, encoding residues 379 to 637 (residue 637 = C terminus), was cloned in frame into the expression vector pCQV2 immediately downstream from the lambda pr promoter of the vector, which also encodes a temperature-sensitive lambda repressor. E. coli cells carrying a chromosomal deletion in mtlA (strain LGS322) and harboring this recombinant plasmid, pDW1, expressed a 28-kDa protein cross-reacting with antipermease antibody when grown at 42 degrees C but not when grown at 32 degrees C. This protein was relatively stable and could be phosphorylated in vitro by the general phospho-carrier protein of the phosphotransferase system, phospho-HPr. Thus, this fragment of the permease, when expressed in the absence of the hydrophobic, membrane-bound N-terminal domain, can apparently fold into a conformation resembling that of the C-terminal domain of the intact permease. When transformed into LGS322 cells harboring plasmid pGJ9-delta 137, which encodes a C-terminally truncated and inactive permease (residues 1 to ca. 480; molecular mass, 51 kDa), pDW1 conferred a mannitol-positive phenotype to this strain when grown at 42 degrees C but not when grown at 32 degrees C. This strain also exhibited phosphoenolpyruvate-dependent mannitol phosphorylation activity only when grown at the higher temperature. In contrast, pDW1 could not complement a plasmid encoding the complementary N-terminal part of the permease (residues 1 to 377). The pathway of phosphorylation of mannitol by the combined protein products of pGJ9-delta 137 and pDPW1 was also investigated by using N-ethylmaleimide to inactivate the second phosphorylation sites of these permease fragments (proposed to be Cys-384). These results are discussed with respect to the domain structure of the permease and its mechanism of transport and phosphorylation.  相似文献   

2.
Mannitol-specific enzyme II, or mannitol permease, of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system of Escherichia coli carries out the transport and phosphorylation of D-mannitol and is most active as a dimer in the membrane. We recently reported the importance of a glutamate residue at position 257 in the binding and transport of mannitol by this protein (C. Saraceni-Richards and G. R. Jacobson, J. Bacteriol. 179:1135-1142, 1997). Replacing Glu-257 with alanine (E257A) or glutamine (E257Q) eliminated detectable mannitol binding and transport by the permease. In contrast, an E257D mutant protein was able to bind and phosphorylate mannitol in a manner similar to that of the wild-type protein but was severely defective in mannitol uptake. In this study, we have coexpressed proteins containing mutations at position 257 with other inactive permeases containing mutations in each of the three domains of this protein. Activities of any active heterodimers resulting from this coexpression were measured. The results show that various inactive mutant permease proteins can complement proteins containing mutations at position 257. In addition, we show that both Glu at position 257 and His at position 195, both of which are in the membrane-bound C domain of the protein, must be on the same subunit of a permease dimer in order for efficient mannitol phosphorylation and uptake to occur. The results also suggest that mannitol bound to the opposite subunit within a permease heterodimer can be phosphorylated by the subunit containing the E257A mutation (which cannot bind mannitol) and support a model in which there are separate binding sites on each subunit within a permease dimer. Finally, we provide evidence from these studies that high-affinity mannitol binding is necessary for efficient transport by mannitol permease.  相似文献   

3.
Column chromatography of the Escherichia coli mannitol permease (mannitol-specific enzyme II of the phosphotransferase system) in the presence of deoxycholate has revealed that the active permease can exist in at least two association states with apparent molecular weights consistent with a monomer and a dimer. The monomeric conformation is favored by the presence of mannitol and by the phosphoenolpyruvate (PEP)-dependent phosphorylation of the protein. The dimer is stabilized by inorganic phosphate (Pi), which also stimulates phospho-exchange between mannitol and mannitol 1-phosphate (a partial reaction in the overall PEP-dependent phosphorylation of mannitol). Kinetic analysis of the phospho-exchange reaction revealed that Pi stimulates phospho-exchange by increasing the Vmax of the reaction. A kinetic model for mannitol permease function is presented involving both conformations of the permease. The monomer (or a less-stable conformation of the dimer) is hypothesized to be involved in the initial mannitol-binding and PEP-dependent phosphorylation steps, while the stably associated dimer is suggested to participate in later steps involving direct phosphotransfer between the permease, mannitol and mannitol 1-phosphate.  相似文献   

4.
D-Mannitol is transported and phosphorylated by a specific enzyme II of the phosphotransferase system of Escherichia coli. This protein was purified previously in detergent solution and has been partially characterized. As one approach in understanding the structure and mechanism of this enzyme/permease, we have tested a number of sugar alcohols and their derivatives as substrates and/or inhibitors of this protein. Our results show that the mannitol permease is highly, but not absolutely, specific for D-mannitol. Compounds accepted by the enzyme include those with substitutions in the C-2(= C-5) position of the carbon backbone of the natural substrate as well as D-mannonic acid, one heptitol and one pentitol. All of these compounds were both inhibitors and substrates for the mannitol permease except for D-mannoheptitol, which was an inhibitor but was not phosphorylated by the enzyme. No compound examined, however, exhibited an affinity for the enzyme as high as that for its natural substrate. We have also investigated the phospholipid requirements of the mannitol permease using phospholipids purified from E coli. The purified protein was significantly activated by phosphatidylethanolamine, but little activation was observed with phosphatidylglycerol or cardiolipin. These observations partially delineate requirements for interaction of sugar alcohols and phospholipids with the mannitol permease. They suggest approaches for the design of specific active site probes for the protein, and strategies for stabilizing the enzyme's activity in vitro.  相似文献   

5.
Part of the dimer and B/C domain interface of the Escherichia coli mannitol permease (EII(mtl)) has been identified by the generation of disulfide bridges in a single-cysteine EII(mtl), with only the activity linked Cys(384) in the B domain, and in a double-cysteine EII(mtl) with cysteines at positions 384 and 124 in the first cytoplasmic loop of the C domain. The disulfide bridges were formed in the enzyme in inside-out membrane vesicles and in the purified enzyme by oxidation with Cu(II)-(1,10-phenanthroline)(3), and they were visualized by SDS-polyacrylamide gel electrophoresis. Discrimination between possible disulfide bridges in the dimeric double-cysteine EII(mtl) was done by partial digestion of the protein and the formation of heterodimers, in which the cysteines were located either on different subunits or on one subunit. The disulfide bridges that were identified are an intersubunit Cys(384)-Cys(384), an intersubunit Cys(124)-Cys(124), an intersubunit Cys(384)-Cys(124), and an intrasubunit Cys(384)-Cys(124). The disulfide bridges between the B and C domain were observed with purified enzyme and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Mannitol did not influence the formation of the disulfide between Cys(384) and Cys(124). The close proximity of the two cysteines 124 was further confirmed with a separate C domain by oxidation with Cu(II)-(1,10-phenanthroline)(3) or by reactions with dimaleimides of different length. The data in combination with other work show that the first cytoplasmic loop around residue 124 is located at the dimer interface and involved in the interaction between the B and C domain.  相似文献   

6.
Three positive selection procedures were developed for the isolation of plasmid-encoded mutants which were defective in the mannitol enzyme II (IIMtl) of the phosphotransferase system (mtlA mutants). The mutants were characterized with respect to the following properties: (i) fermentation, (ii) transport, (iii) phosphoenolpyruvate(PEP)-dependent phosphorylation, and (iv) mannitol-1-phosphate-dependent transphosphorylation of mannitol. Cell lysis in response to indole acrylic acid, which causes the lethal overexpression of the plasmid-encoded mtlA gene, was also scored. No correlation was noted between residual IIMtl activity in the mutants and sensitivity to the toxic effect of indole acrylic acid. Plasmid-encoded mutants were isolated with (i) total or partial loss of all activities assayed, (ii) nearly normal rates of transphosphorylation but reduced rates of PEP-dependent phosphorylation, (iii) nearly normal rates of PEP-dependent phosphorylation but reduced rates of transphosphorylation, and (iv) total loss of transport activity but substantial retention of both phosphorylation activities in vitro. A mutant of this fourth class was extensively characterized. The mutant IIMtl was shown to be more thermolabile than the wild-type enzyme, it exhibited altered kinetic behavior, and it was shown to arise by a single nucleotide substitution (G-895----A) in the mtlA gene, causing a single amino acyl substitution (Gly-253----Glu) in the permease. The results show that a single amino acyl substitution can abolish transport function without abolishing phosphorylation activity. This work serves to identify a site which is crucial to the transport function of the enzyme.  相似文献   

7.
M M Stephan  G R Jacobson 《Biochemistry》1986,25(25):8230-8234
Two proteolytic fragments of the Escherichia coli mannitol permease (EIImtl) have been identified on autoradiograms of sodium dodecyl sulfate-polyacrylamide gels and mapped with respect to the membrane. EIImtl was selectively radiolabeled with either [35S]methionine or a mixture of 14C-labeled amino acids in E. coli minicells harboring a plasmid containing the mannitol operon. The intact permease (Mr 65,000) in everted vesicles derived from labeled minicells was cleaved by mild trypsinolysis into two smaller fragments (Mr 34,000 and 29,000). The 34,000-dalton fragment remained in the membrane and was insensitive to further proteolysis by trypsin. This fragment was identified as the N-terminal half of the protein by comparing the amount of the original [35S]methionine label that it retained with the known differential distribution of methionine in the two halves of EIImtl. The 29,000-dalton fragment, which was released into the soluble fraction and was sensitive to further trypsinolysis, therefore corresponds to the C-terminal half of the mannitol permease. Both fragments were shown to be antigenically related to EIImtl by immunoblotting with anti-EIImtl antibody. The 34,000-dalton fragment was further shown to form an oligomer under conditions which allow the intact enzyme to dimerize, suggesting that this domain plays an important role in EIImtl subunit interactions. These results support a model in which EIImtl consists of two domains of approximately equal size: a membrane-bound, N-terminal domain with a tendency to self-associate, and a cytoplasmic C-terminal domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The mannitol transporter EII(mtl) from Escherichia coli is responsible for the uptake of mannitol over the inner membrane and its concomitant phosphorylation. EII(mtl) is functional as a dimer and its membrane-embedded C domain, IIC(mtl), harbors one high affinity mannitol binding site. To characterize this domain in more detail the microenvironments of thirteen residue positions were explored by 5-fluorotryptophan (5-FTrp) fluorescence spectroscopy. Because of the simpler photophysics of 5-FTrp compared to Trp, one can distinguish between the two 5-FTrp probes present in dimeric IIC(mtl). At many labeled positions, the microenvironment of the 5-FTrps in the two protomers differs. Spectroscopic properties of three mutants labeled at positions 198, 251, and 260 show that two conserved motifs (Asn194-His195 and Gly254-Ile255-His256-Glu257) are located in well-structured parts of IIC(mtl). Mannitol binding has a large impact on the structure around position 198, while only minor changes are induced at positions 251 and 260. Phosphorylation of the cytoplasmic B domain of EII(mtl) is sensed by 5-FTrp at positions 30, 42, 251 and 260. We conclude that many parts of the IIC(mtl) structure are involved in the sugar translocation. The structure of EII(mtl), as investigated in this work, differs from the recently solved structure of a IIC protein transporting diacetylchitobiose, ChbC, and also belonging to the glucose superfamily of EII sugar transporters. In EII(mtl), the sugar binding site is more close to the periplasmic face and the structure of the 2 protomers in the dimer is different, while both protomers in the ChbC dimer are essentially the same.  相似文献   

9.
Ma X  Margolin W 《Journal of bacteriology》1999,181(24):7531-7544
In Escherichia coli, FtsZ is required for the recruitment of the essential cell division proteins FtsA and ZipA to the septal ring. Several C-terminal deletions of E. coli FtsZ, including one of only 12 amino acids that removes the highly conserved C-terminal core domain, failed to complement chromosomal ftsZ mutants when expressed on a plasmid. To identify key individual residues within the core domain, six highly conserved residues were replaced with alanines. All but one of these mutants (D373A) failed to complement an ftsZ chromosomal mutant. Immunoblot analysis demonstrated that whereas I374A and F377A proteins were unstable in the cell, L372A, D373A, P375A, and L378A proteins were synthesized at normal levels, suggesting that they were specifically defective in some aspect of FtsZ function. In addition, all four of the stable mutant proteins were able to localize and form rings at potential division sites in chromosomal ftsZ mutants, implying a defect in a function other than localization and multimerization. Because another proposed function of FtsZ is the recruitment of FtsA and ZipA, we tested whether the C-terminal core domain was important for interactions with these proteins. Using two different in vivo assays, we found that the 12-amino-acid truncation of FtsZ was defective in binding to FtsA. Furthermore, two point mutants in this region (L372A and P375A) showed weakened binding to FtsA. In contrast, ZipA was capable of binding to all four stable point mutants in the FtsZ C-terminal core but not to the 12-amino-acid deletion.  相似文献   

10.
Cyclic AMP independence of Escherichia coli protein phosphorylation   总被引:1,自引:0,他引:1  
M Dadssi  A J Cozzone 《FEBS letters》1985,186(2):187-190
The effect of cyclic AMP on protein phosphorylation was analyzed comparatively in two strains of E.coli differing in their capacity to synthesize this nucleotide, one of them lacking the adenylate cyclase activity. The results obtained from both in vivo and in vitro experiments concurred in showing that the bacterial protein kinase activity is cAMP-independent.  相似文献   

11.
A cysteine cross-linking approach was used to identify residues at the dimer interface of the Escherichia coli mannitol permease. This transport protein comprises two cytoplasmic domains and one membrane-embedded C domain per monomer, of which the latter provides the dimer contacts. A series of single-cysteine His-tagged C domains present in the native membrane were subjected to Cu(II)-(1,10-phenanthroline)(3)-catalyzed disulfide formation or cysteine cross-linking with dimaleimides of different length. The engineered cysteines were at the borders of the predicted membrane-spanning alpha-helices. Two residues were found to be located in close proximity of each other and capable of forming a disulfide, while four other locations formed cross-links with the longer dimaleimides. Solubilization of the membranes did only influence the cross-linking behavior at one position (Cys(73)). Mannitol binding only effected the cross-linking of a cysteine at the border of the third transmembrane helix (Cys(134)), indicating that substrate binding does not lead to large rearrangements in the helix packing or to dissociation of the dimer. Upon mannitol binding, the Cys(134) becomes more exposed but the residue is no longer capable of forming a stable disulfide in the dimeric IIC domain. In combination with the recently obtained projection structure of the IIC domain in two-dimensional crystals, a first proposal is made for alpha-helix packing in the mannitol permease.  相似文献   

12.
We have constructed a series of deletion mutations of the cloned Escherichia coli K-12 mtlA gene, which encodes the mannitol-specific enzyme II of the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system. This membrane-bound permease consists of 637 amino acid residues and is responsible for the concomitant transport and phosphorylation of D-mannitol in E. coli. Deletions into the 3' end of mtlA were constructed by exonuclease III digestion. Restriction mapping of the resultant plasmids identified several classes of deletions that lacked approximately 5% to more than 75% of the gene. Immunoblotting experiments revealed that many of these plasmids expressed proteins within the size range predicted by the restriction analyses, and all of these proteins were membrane localized, which demonstrated that none of the C-terminal half of the permease is required for membrane insertion. Functional analyses of the deletion proteins, expressed in an E. coli strain deleted for the chromosomal copy of mtlA, showed that all but one of the strains containing confirmed deletions were inactive in transport and PEP-dependent phosphorylation of mannitol, but deletions removing up to at least 117 amino acid residues from the C terminus of the permease were still active in catalyzing phospho exchange between mannitol 1-phosphate and mannitol. A deletion protein that lacked 240 residues from the C terminus of the permease was inactive in phospho exchange but still bound mannitol with high affinity. These experiments localize sites important for transport and PEP-dependent phosphorylation to the extreme C terminus of the mannitol permease, sites important for phospho exchange to between residues 377 and 519, and sites necessary for mannitol binding to the N-terminal 60% of the molecule. The results are discussed with respect to the fact that the mannitol permease consists of structurally independent N- and C-terminal domains.  相似文献   

13.
The Escherichia coli mannitol permease is an integral membrane protein that catalyzes the concomitant transport and phosphorylation of D-mannitol and also acts as the chemoreceptor for chemotaxis of E. coli to this hexitol. At least 4 aminoacyl residues in this protein have been suggested to be important in these activities: His-195, His-256, Cys-384, and His-554. Previous evidence has implicated His-554 and Cys-384 as residues that are covalently phosphorylated, in sequence, as intermediates in phosphotransfer to mannitol. We have constructed a number of site-specific mutants of the mannitol permease at these positions. The properties of proteins in which His-554 or Cys-384 has been changed are consistent with their essential roles in phosphorylation. We also used these mutants to show that intermolecular phosphotransfer between His-554 and Cys-384 can occur in vivo in membrane-bound heterodimers consisting of different mutant subunits. The properties of proteins with mutations at position 195 suggest an important role for this residue involving hydrogen bonding, while His-256 performs no significant function in the mannitol permease. Finally, the phosphorylation and chemoreception activities for each mutant protein were each roughly in the same proportion to these activities in the wild-type protein, showing that these functions of the mannitol permease are tightly coupled under normal physiological conditions.  相似文献   

14.
15.
Green AL  Hrodey HA  Brooker RJ 《Biochemistry》2003,42(38):11226-11233
Previous work on the lactose permease of Escherichia coli has shown that mutations along a face of predicted transmembrane segment 8 (TMS-8) play a critical role in conformational changes associated with lactose transport (Green, A. L., and Brooker, R. J. [2001] Biochemistry 40, 12220-12229). Substitutions at positions 261, 265, 268, 272, and 276, which form a continuous stripe along TMS-8, were markedly defective for lactose transport velocity. In the current study, three single mutants (F261D, N272Y, N272L) and a double mutant (T265Y/M276Y) were chosen as parental strains for the isolation of mutants that restored transport function. A total of 68 independent mutants were isolated and sequenced. Forty-four were first-site revertants in which the original mutation was changed back to the wild-type residue or to a residue with a similar side-chain volume. The other 24 mutations were second-site suppressors in TMS-2 (Q60L, Q60P), loop 2/3 (L70H), TMS-7 (V229G/A), TMS-8 (F261L), and TMS-11 (F354V, C355G). On the basis of their locations, the majority of the second-site suppressors can be interpreted as improving the putative TMS-2/TMS-7/TMS-11 interface to compensate for conformational defects imposed by mutations in TMS-8 that disrupt the putative TMS-1/TMS-5/TMS-8 interface. Overall, this paper suggests that the TMS-2/TMS-7/TMS-11 interface is more important from a functional point of view, even though there is compelling evidence for structural symmetry between the two halves of the permease.  相似文献   

16.
P D Roepe  H R Kaback 《Biochemistry》1990,29(10):2572-2577
By use of techniques described recently for lac permease [Roepe, P.D., & Kaback, H.R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6087], the melibiose permease from Escherichia coli, another polytopic integral plasma membrane protein, has been purified in a metastable soluble form after overexpression of the melB gene via the T7 RNA polymerase system. As demonstrated with lac permease, soluble melibiose permease is dissociated from the membrane with 5.0 M urea and appears to remain soluble in phosphate buffer at neutral pH after removal of urea by dialysis, although the protein aggregates in a time- and concentration-dependent fashion. Moreover, soluble melibiose permease behaves as a monomer during purification by size exclusion chromatography in the presence of urea. Circular dichroism of purified soluble melibiose permease reveals that the protein is highly helical in potassium phosphate buffer and that secondary structure is disrupted in 5.0 M urea. Finally, purified melibiose permease can be reconstituted into proteoliposomes, and the preparations catalyze membrane potential driven H+/melibiose or Na+/methyl 1-thio-beta,D-galactopyranoside symport. The results provide further support for the notion that hydrophobic transmembrane proteins may be able to assume a nondenatured conformation in aqueous solution and extend the implication that the approach described may represent a general method for rapid isolation and reconstitution of this class of membrane proteins.  相似文献   

17.
The Escherichia coli RNA chaperone Hfq is involved in riboregulation of target mRNAs by small trans-encoded non-coding (ncRNAs). Previous structural and genetic studies revealed a RNA-binding surface on either site of the Hfq-hexamer, which suggested that one hexamer can bring together two RNAs in a pairwise fashion. The Hfq proteins of different bacteria consist of an evolutionarily conserved core, whereas there is considerable variation at the C-terminus, with the γ- and β-proteobacteria possessing the longest C-terminal extension. Using different model systems, we show that a C-terminally truncated variant of Hfq (Hfq65), comprising the conserved hexameric core of Hfq, is defective in auto- and riboregulation. Although Hfq65 retained the capacity to bind ncRNAs, and, as evidenced by fluorescence resonance energy transfer assays, to induce structural changes in the ncRNA DsrA, the truncated variant was unable to accommodate two non-complementary RNA oligonucleotides, and was defective in mRNA binding. These studies indicate that the C-terminal extension of E. coli Hfq constitutes a hitherto unrecognized RNA interaction surface with specificity for mRNAs.  相似文献   

18.
The extreme C-terminus (Ser-490 to Lys-637) of the Escherichia coli EIImtl was subcloned to test structural and mechanistic proposals about the existence of an EIII-like domain in this enzyme. Oligonucleotide-directed mutagenesis was used to produce a unique NcoI restriction site and, at the same time, to change Ser-490 into methionine in a flexible region in front of the proposed EIII-like domain. The 16-kDa C-terminal domain (CI) was overexpressed in Escherichia coli, purified, and analyzed in vitro for catalytic activity in the presence of an EIImtl mutated at its first phosphorylation site, His-554 (EII-H554A). The results presented show that this domain can be expressed as a structurally stable, enzymatically active entity which is able to restore the PEP-dependent phosphorylation activity of the mutant EIImtl-H554A to 25% of wild-type levels. To demonstrate the EIII activity of the CI domain in a more direct way, we also substituted it for EIIImtl in the Staphylococcus carnosus system. The CI domain was active in transferring the phosphoryl group to Staph. carnosus EII; however, it was 6.5 times less active compared to Staph. carnosus EIIImtl itself. EIIImtl from Staph. carnosus, on the other hand, was able to substitute for the isolated C-terminal domain in the E. coli mannitol phosphorylation assay; however, it appeared to be 2 or 3 times less effective.  相似文献   

19.
The cytoplasmic C-terminal domain, residues 348-637, and the membrane-bound N-terminal domain, residues 1-347, of EIImtl have been subcloned and expressed in Escherichia coli. The N-terminal domain, IICmtl, contains the mannitol binding site, and the C-terminal domain, IIBAmtl, contains the activity-linked phosphorylation sites, His-554 and Cys-384. Overexpression of the BA domain was achieved by a translational in-frame fusion of the gene with the cro ATG start codon, downstream of the strong PR promoter of phage lambda. The domain has been purified and characterized in in vitro complementation assays. It possessed no mannitol phosphorylation activity itself but was able to restore the phosphoenolpyruvate-dependent phosphorylation activity of two EIImtl phosphorylation site mutants, lacking His-554 or Cys-384. The complementary N-terminal domain was also expressed. Membranes possessing IICmtl were unable to phosphorylate mannitol at the expense of phosphoenolpyruvate. However, when the membranes were combined with the purified C-terminal domain, mannitol phosphorylation activity was restored. Mannitol transport and phosphorylation were also restored in vivo when the two plasmids encoding the N- and C-terminal domains were expressed in the same cell. These data demonstrate the existence of structurally and functionally distinct domains in EIImtl: a cytoplasmic domain with phosphorylating activity and a membrane-bound N-terminal domain which, in the presence of the cytoplasmic domain, is able to actively transport and phosphorylate mannitol. The ability to separate, overproduce, and purify structurally stable, enzymatically active domains opens the way for 3D structural studies as well as complete kinetic analysis of the activities of the individual domains and their interactions.  相似文献   

20.
The Tol proteins are involved in the outer membrane stability of gram-negative bacteria. The C-terminal domain of TolA was mutagenized to identify residues important for its functions. The isolation of suppressor mutants of tolA mutations in the tolB gene confirmed an interaction between TolAIII and the N-terminal domain of TolB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号