首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prostaglandin A2 (PGA2) potently inhibits cell proliferation and suppresses tumor growth in vivo, but little is known regarding the molecular mechanisms mediating these effects. Here we demonstrate that treatment of breast carcinoma MCF-7 cells with PGA2 leads to G1 arrest associated with a dramatic decrease in the levels of cyclin D1 and cyclin-dependent kinase 4 (cdk4) and accompanied by an increase in the expression of p21. We further show that these effects occur independent of cellular p53 status. The decline in cyclin D and cdk4 protein levels is correlated with loss in cdk4 kinase activity, cdk2 activity is also significantly inhibited in PGA2-treated cells, an effect closely associated with the upregulation of p21. Immunoprecipitation experiments verified that p21 was indeed complexed with cdk2 in PGA2-treated cells. Additional experiments with synchronized MCF-7 cultures stimulated with serum revealed that treatment with PGA2 prevents the progression of cells from G1 to S. Accordingly, the kinase activity associated with cdk4, cyclin E, and cdk2 immunocomplexes, which normally increases following serum addition, was unchanged in PGA2-treated cells. Furthermore, the retinoblastoma protein (Rb), a substrate of cdk4 and cdk2 whose phosphorylation is necessary for cell cycle progression, remains underphosphorylated in PGA2-treated serum-stimulated cells. These findings indicate that PGA2 exerts its growth-inhibitory effects through modulation of the expression and/or activity of several key G1 regulatory proteins. Our results highlight the chemotherapeutic potential of PGA2, particularly for suppressing growth of tumors lacking p53 function.  相似文献   

2.
Ichikawa A  Ando J  Suda K 《Human cell》2008,21(2):28-37
Treatment of exponentially growing MCF-7 human breast carcinoma cells with tamoxifen (TAM) inhibits cell growth in a dose-dependent manner. However, the molecular basis for the drug's activity and its relationship to the cell cycle have not yet been clearly established. In this study, we analyzed cell cycle-related proteins used for immunoblotting and flow cytometry in TAM-treated MCF-7 cells. In addition, the ratio of apoptosis in the cell was analyzed using labeling of DNA strand breaks (TdT assay). In flow-cytometric DNA distribution analysis, the S-phase fraction showed a marked decrease and a concomitant increase in G1- and G2-phase cells accompanying the inhibitory effect of TAM; these changes were time- and dose-dependent. Immunoblotting revealed that the levels of p53 and p21(WAF1/CIP1) in TAM-treated cells increased in a time- and dose-dependent manner, whereas those of p27(KIP1) and p16 slightly increased or remained unchanged. Furthermore, cyclin D3 and B showed sharp decreases, in contrast with p53 and p21(WAF1/CIP1) DNA-apoptosis dual analysis using flow cytometry revealed that the TAM-treated samples contained apoptotic cells, the majority of which were arrested in G1 or G2 and showed suppression of Bcl-2 protein. These results suggest that the tumorigenic effect of TAM on MCF-7 cells arises through antitumor effects that are due to the expression of cyclin-dependent kinase inhibitors, especially p21(WAF1/CIP1) and these are regulated by the decrease of wild-type p53. The proposed mechanism is similar to that underlying the cytotoxic effects of other agents and ionizing irradiation that cause DNA damage.  相似文献   

3.
The present study examines the molecular mechanisms by which a member of a novel series of pyrrolo-1,5-benzoxazepines, PBOX-21, induces G1 arrest in 1321N1 cells. PBOX-21-induced G1 arrest is preceded by both a decrease in CDK2 kinase activity, which is critical for the G1/S transition, and a downregulation in cyclin D(3) protein expression levels, suggesting that these two events may be crucially involved in the mediation of the cell cycle arrest. The decrease in CDK2 activity may be due to an observed decrease in CDK2 protein levels following PBOX-21 treatment. Coinciding with the arrest is a reduction in the activity of CDK4, due to either the observed PBOX-21 induced downregulation in CDK4 expression, or a reduction in complex formation between cyclin D(3)-CDK4 leading to a decrease in the levels of active cyclin D(3)-CDK4 complexes with kinase activity. The level of CDK6 activity was also seen to be reduced following PBOX-21 treatment, also possibly due to a reduction in complex formation with cyclin D(3). However, this reduction in CDK6 kinase activity was not seen until after PBOX-21-induced G1 arrest has reached its maximum, and therefore may be viewed as a consequence of, and a method of maintaining the PBOX-21-induced arrest, rather than a cause. Also in parallel with the G1 arrest elicited by PBOX-21 is an upregulation in the universal CDK inhibitor, p21. Furthermore, the retinoblastoma protein (Rb), a substrate of CDK2 and CDK6, whose phosphorylation is necessary for cell cycle progression, becomes hypophosphorylated. These results indicate that PBOX-21 exerts its growth inhibitory effects through the modulation of the expression and activity of several key G1 regulatory proteins.  相似文献   

4.
Tehranolide, a novel natural sesquiterpene lactone with an endoperoxide group, bears a structural similarity to artemisinin and has been shown to inhibit cell growth. However, the underlying mechanisms of these activities remain obscure. The purpose of this study was to investigate the fundamental mechanisms by which tehranolide inhibits growth in MCF-7 cells. Cell growth was determined by using the MTT viability assay and counting cells. Apoptosis and cell-cycle progression were evaluated by means of Hoechst 33258 staining, flow cytometry with annexin-V/propidium iodide double staining, and ROS formation. The protein expression of Bax and Bcl-2 was demonstrated by Western blotting. Moreover, to determine the molecular mechanism whereby tehranolide mediates G0/G1 arrest, the expression of PI3K, p-PI3K, Akt, p-Akt, p27kip1, cyclin D1, and CDK4 was monitored. Cell proliferation was significantly inhibited by tehranolide in a dose- and time-dependent manner. This compound inhibited cell proliferation and induced G0/G1 arrest through the PI3K/Akt/cyclin D1 pathway. It also induced apoptosis and an increase in ROS. In addition, an increase in cytochrome c and Bax, as well as a decrease in Bcl-2, was observed. Moreover, blocking the CD95 receptor with an anti-CD95 antibody (ZB4) had no effect on tehranolide-mediated apoptosis. This study has yielded promising results, which show for the first time that tehranolide does inhibit the growth of cancer cells. The selective inhibition of cancer cell growth, the apoptosis induction via the mitochondrial pathway, and the G0/G1 arrest by modulating the PI3K/AKT signaling pathway and downregulating cyclin D1, which leads to the release of p27kip1 and the association of this inhibitor with the cyclin E/CDK2 complex, ultimately preventing cell-cycle progression from G1 to S phase, all serve to provide support for further studies of tehranolide as a possible anticancer drug in the clinical treatment of cancer.  相似文献   

5.
Rat fibroblasts transformed by a temperature-sensitive mutant of murine p53 undergo a reversible growth arrest in G1 at 32.5 degrees C, the temperature at which p53 adopts a wild-type conformation. The arrested cells contain inactive cyclin-dependent kinase 2 (cdk2) despite the presence of high levels of cyclin E and cdk-activating kinase activity. This is due in part to p53-dependent expression of the p2l cdk inhibitor. Upon shift to 39 degrees C, wild-type p53 is lost and cdk2 activation and pRb phosphorylation occur concomitantly with loss of p2l. This p53-mediated growth arrest can be abrogated by overexpression of cdk4 and cdk6 but not cdk2 or cyclins, leading to continuous proliferation of transfected cells in the presence of wild-type p53 and p2l. Kinase-inactive counterparts of cdk4 and cdk6 also rescue these cells from growth arrest, implicating a noncatalytic role for cdk4 and cdk6 in this resistance to p53-mediated growth arrest. Aberrant expression of these cell cycle kinases may thus result in an oncogenic interference with inhibitors of cell cycle progression.  相似文献   

6.
Peroxisome proliferator activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily. Ligand activation of PPARgamma has been shown to cause growth arrest in several human tumor cell types, but the underlying molecular mechanism has not been elucidated. We report here that the PPARgamma ligand troglitazone (TRO) inhibited MCF-7 cell proliferation by blocking events critical for G1 --> S progression. Flow cytometry demonstrated that TRO at 20 microM increased the percentage of cells in G1 from 51 to 69% after 24 h. Accumulation of cells in G1 was accompanied by an attenuation of Rb protein phosphorylation associated with decreased CDK4 and CDK2 activities. Inhibition of CDK activity by TRO correlates with decreased protein levels for several G1 regulators of Rb phosphorylation (cyclin D1, and CDKs 2, 4, and 6). Overexpression of cyclin D1 partially rescued MCF-7 cells from TRO-mediated G1 arrest. Targeting of G1 regulatory proteins, particularly cyclin D1, and the resulting induction of G1 arrest by TRO may provide a novel antiproliferative therapy for human breast cancer.  相似文献   

7.
BackgroundTriple-negative breast cancer (TNBC) accounts for 20% of breast cancer that does not express HER2, progesterone and estrogen receptors. It is associated with a high mortality rate, morbidity, metastasis, recurrence, poor prognosis and resistance to chemotherapy. Lipoxygenase-5 (LOX-5), cyclooxygenase-2 (COX-2), cathepsin-D (CATD), ornithine decarboxylase (ODC) and dihydrofolate reductase (DHFR) are involved in breast cancer carcinogenesis; hence, there is a pressing need to identify novel chemicals that targets these enzymes. Narirutin, a flavanone glycoside abundantly present in citrus fruits, is reported to have immune-modulatory, anti-allergic and antioxidant potential. Still, the cancer chemopreventive mechanism against TNBC has not been explored.MethodsIn vitro experiments, enzyme activity, expression analysis, molecular docking and MD simulation were carried out.ResultsNarirutin suppressed the growth of MDA-MB-231 and MCF-7 in a dose-proportional manner. The pronounced effect with >50% inhibition was observed in SRB and MTT assays for MDAMB-231 cells. Unexpectedly, narirutin suppressed the proliferation of normal cells (24.51%) at 100 μM. Further, narirutin inhibits the activity of LOX-5 in cell-free (18.18 ± 3.93 μM) and cell-based (48.13 ± 7.04 μM) test systems while moderately affecting COX-2, CATD, ODC and DHFR activity. Moreover, narirutin revealed a down-regulation of LOX-5 expression with a fold change of 1.23. Besides, MD simulation experiments confirm that narirutin binding forms a stable complex with LOX-5 and improves the stability and compactness of LOX-5. In addition, the prediction analysis demonstrates that narirutin could not cross the blood-brain barrier and did not act as an inhibitor of different CYPs.Conclusions and significanceNarirutin could be a potent cancer chemopreventive lead for TNBC, further paving the way for synthesizing novel analogues.  相似文献   

8.
The prostanoid prostacyclin (PGI2) inhibits proliferation of cultured vascular SMCs by inhibiting cell cycle progression from G1 to S phase. Progression through G1 phase is regulated by the sequential activation of the G1 phase cyclin-dependent kinases (cdks). Recent studies have shown that PGI2-dependent activation of its receptor, IP, inhibits G1 phase progression by blocking the degradation of p27 and the activation of cyclin E-cdk2. High Density Lipoproteins (HDL) and its associated apolipoprotein, ApoE, also inhibit S phase entry of vascular SMCs, and the effects of HDL and ApoE are, at least in part, also mediated by the production of PGI2. The antimitogenic effects of hyaluronan may also be controlled by PGI2. This review summarizes the effects of PGI2 on the G1 phase cyclin-cdks and discusses the potential role of PGI2 as a common component of multiple extracellular signals that attenuate the proliferation of vascular SMCs.  相似文献   

9.
Paclitaxel is a potential anti-cancer agent for several malignancies including ovary, breast, and head and neck cancers. This study investigated the kinetics of paclitaxel-induced cell cycle perturbation in two human nasopharyngeal carcinoma (NPC) cell lines, NPC-TW01 and NPC-TW04. NPC cells treated with higher concentrations (0.1 or 1 μM) of paclitaxel showed obvious G2/M arrest and then converted to a cell population with reduced DNA content, which was detected as a sub-G2 peak in the flow cytometric histographs. If a low concentration (5 nM) of paclitaxel was used instead, transient G2/M arrest was observed in NPC cells, which subsequently converted to a sub-G1 form during the treatment period. Internucleosomal fragmentation and chromatin condensation were detectable in these sub-G1 and sub-G2 cells, suggesting that persistent or transient G2/M arrest is a prerequisite step for apoptosis elicited by varying doses of paclitaxel. The levels of cyclins A, B1, D1, E, CDK 1 (CDC 2), CDK 2 and proliferating cell nuclear antigen (PCNA) were unchanged in NPC cells following treatment with any concentration of paclitaxel; however, apoptosis-related cyclin B1-associated CDC 2 kinase was highly activated by paclitaxel even at concentrations as low as 5 nM, which is consistent with the finding that low-dose paclitaxel is also able to induce apoptosis in NPC cells. Activation of cyclin B1-associated CDC 2 kinase seems to be an important G2/M event required for paclitaxel-induced apoptosis, and this activation of cyclin B1/CDC 2 kinase could be attributed to the increased activity of CDK 7 kinase. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
Activation of human cyclin-dependent kinases in vitro.   总被引:38,自引:10,他引:38       下载免费PDF全文
We have analyzed the activation of human cyclin-dependent kinases in a cell-free system. Human CDC2, cyclin-dependent kinase 2 (CDK2), cyclin A, and cyclin B1 were produced in insect cells by infection with recombinant baculoviruses. CDC2 or CDK2 monomers in lysates of infected cells could be activated by the addition of lysates containing cyclin A or B1. CDC2 activation by cyclin B1, as well as CDK2 activation by cyclins A and B1, was accompanied by the formation of high molecular weight complexes. In contrast, CDC2 did not bind effectively to cyclin A. CDC2 activation by cyclin B1 was studied in detail and was found to be accompanied by phosphorylation of CDC2 on Threonine 161. The binding of CDC2 to cyclin B1 also occurred under conditions where CDC2 phosphorylation was prevented, resulting in an inactive complex that could then be phosphorylated and activated on addition of cell extract. Highly purified CDC2 and cyclin B1 also formed inactive complexes that could be activated in an ATP-dependent fashion by unidentified components in crude cell extracts. These data suggest that the CDC2 activation process begins with cyclin binding, after which CDC2 phosphorylation, catalyzed by a separate enzyme, leads to activation.  相似文献   

11.
The MDA-468 human breast cancer cell line displays the unusual phenomenon of growth inhibition in response to pharmacological concentrations of EGF. This study was initiated with the objective of elucidating the cellular mechanisms involved in EGF-induced growth inhibition. Following EGF treatment the percentage of MDA-468 cells in G1 phase increased, together with a concomitant depletion in S and G2/M phase populations, as revealed by flow cytometry of DNA content. The apparent G1 block in the cell cycle was confirmed by treating the cells with vinblastine. DNA synthesis was reduced to about 35% of that measured in control, untreated cells after 48 h of EGF treatment, as measured by the incorporation of [3H]thymidine. DNA synthesis returned to normal following the removal of EGF from the growth-arrested cells. In order to locate the EGF-induced event responsible for the G1 arrest more precisely, we examined the expression of certain cell cycle-dependent genes by Northern blot analysis. EGF treatment did not alter either the induction of the early G1 marker, c-myc, or the expression of the late G1 markers, proliferating cell nuclear antigen, and thymidine kinase. However, EGF-treated cells revealed down regulation of p53 and histone 3.2 expression, which are expressed at the G1/S boundary and in S phase, respectively. These results indicate that EGF-induced growth inhibition in MDA-468 human breast cancer cells is characterized by a reversible cell cycle block at the G1/S boundary.  相似文献   

12.
We have studied the ability of F9 teratocarcinoma cells to arrest in G1/S and G2/M checkpoints following gamma-irradiation. Wild-type p53 protein is rapidly accumulated in F9 cells after gamma-irradiation, however this is not followed by G1/S arrest; there is just a reversible delay of the cell cycle in G2/M. In order to elucidate the reasons of the lack of G1/S arrest in F9 cells we investigated the levels of regulatory cell cycle proteins: G1-cyclins, cyclin dependent kinases and kinase inhibitor p21WAF1/CIP1. We have shown that in spite of p53-dependent activation of p21WAF1/CIP1 promoter, p21WAF1/CIP1 protein is not revealed by different polyclonal and monoclonal antibodies, either by immunoblotting or by immunofluorescent staining. However, when cells are treated with specific proteasome inhibitor lactacystin, p21WAF1/CIP1 protein is revealed. We therefore suggest that p21WAF1/CIP1 protein is subjected to proteasome degradation in F9 cells and probably the lack of G1/S arrest after gamma-irradiation is due to this degradation. Thus, it is the combination of functionally active p53 with low level expression of p21WAF1/CIP1 that causes a short delay of the cell cycle progression in G2/M, rather than the G1-arrest after gamma-irradiation of F9 cells.  相似文献   

13.
14.
DNA methylation plays a central role in the epigenetic regulation of gene expression during development and progression of cancer diseases. The inheritance of specific DNA methylation patterns are acquired in the early embryo and are specifically maintained after cellular replication via the DNA methyltransferase 1 (DNMT1). Recent studies have suggested that the enzymatic activity of DNMT1 is possibly modulated by phosphorylation of serine/threonine residues located in the N-terminal domain of the enzyme. In the present work, we report that cyclin-dependent kinases (CDKs) 1, 2 and 5 can phosphorylate Ser154 of human DNMT1 in vitro. Further evidence of phosphorylation of endogenous DNMT1 at position 154 by CDKs is also found in 293 cells treated with roscovitine, a specific inhibitor of CDK1, 2 and 5. To determine the importance of Ser154 phosphorylation, a mutant of DNMT1 encoding a single-point mutation at position 154 (S154A) was generated. This mutation induced a severe loss of enzymatic activity when compared to wild type DNMT1. Moreover, after treatment with 5-Aza-2′-Deoxycytidine (5-aza-dC), a faster decline in DNMT1 protein level was observed for HEK-293 cells expressing DNMT1(S154A) as compared to cells expressing wild type DNMT1. Our data suggest that phosphorylation of DNMT1 at Ser154 by CDKs is important for enzymatic activity and protein stability of DNMT1. Considering that tumour-associated cell cycle defects are often mediated by alterations in CDK activity, our results suggest that dysregulation of cell cycle via CDKs could induce abnormal phosphorylation of DNMT1 and lead to DNA hypermethylation often observed in cancer cells.  相似文献   

15.
Hepatocellular carcinoma is one of the most common cancers in worldwide. We previously reported a novel thienopyridine derivative 3-amino-6-(3,4-dichlorophenyl) thieno[2,3-b]pyridine-2-carboxamide (SKLB70359) which possesses anticancer activity against hepatocellular carcinoma. In present study, we further investigated its anticancer activity and possible mechanism. The SKLB70359 treatment decreased the viability of a panel of hepatocellular carcinoma cell lines in a concentration- and time-dependent manner with IC(50) 0.4 ~ 2.5 μM. The mechanism study showed that SKLB70359 induced G0/G1 cell cycle arrest and then led to apoptotic cell death of HepG2 cell. The SKLB70359 induced G0/G1 cell cycle arrest was characterized by down-regulation of cyclin-dependent kinase 2 (CDK2), CDK4, CDK6 expression and up-regulation of p53, p21(WAF1). Activating of caspase-3 and caspase-9 was also observed. Meanwhile, proliferation inhibitory effect of SKLB70359 was associated with decreased level of phosphorylated p44/42 mitogen activated protein kinase (p44/42 MAPK) and phosphorylated retinoblastoma protein (Rb). Moreover, SKLB70359 exhibit less toxicity to non-cancer cells than tumor cells. In conclusion, the findings in this study suggested that SKLB70359 have potential anticancer efficacy via G0/G1 cell cycle arrest and apoptosis induction. Its potential to be a candidate of anticancer agent is worth being further investigated.  相似文献   

16.
17.
Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle   总被引:33,自引:0,他引:33  
Cyclin-dependent kinases are the key regulators of cell-cycle transitions. In mammalian cells, Cdk2, Cdk4, Cdk6 and associated cyclins control the G(1) to S phase transition. Because proper regulation of this transition is critical for an organism's survival, these protein kinases are exquisitely regulated at different mechanistic levels and in response to a large variety of intrinsic and extrinsic signals.  相似文献   

18.
Retinoic acid inhibits proliferation of hormone-dependent, but not hormone-independent breast cancer cells. Retinoic acid-induced changes in cellular proliferation and differentiation are associated with disturbances in growth factor signaling and frequently with changes in protein kinase C expression. PKCδ, ϵ, and ζ are expressed in both hormone-dependent (T-47D) and hormone-independent (MDA-MB-231) cell lines. Retinoic acid arrested T-47D proliferation, induced PKCα expression and concomitantly repressed PKCζ expression. The changes in PKCα and PKCζ reflect retinoic acid-induced changes in mRNA. In contrast, retinoic acid had no effect on growth, or PKC expression in MDA-MB-231 cells. Growth arrest and the induction of PKCα, but not the reduction in PKCζ, resulted from selective activation of RARα. In total, these results support an important role for PKCα in mediating the anti-proliferative action of retinoids on human breast carcinoma cells. J. Cell. Physiol. 172:306–313, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
We previously reported that hyperoxia (95% O(2)) induces an S-phase cell cycle arrest in glutathione peroxidase-deficient human carcinoma cells T47D-H3 (Exp. Cell Res. 256:347-357; 2000). Here, we investigated whether increasing the peroxide scavenging capacity via glutathione peroxidase-1 (GPx1) expression can prevent cell cycle alterations induced by oxidative stress. We show that GPx1-proficient T47D-GPx-2 transfectant cells, in which GPx1 concentration is most elevated in mitochondria (Biochem. Biophys. Res. Commun. 272:416-422; 2000), are partially resistant to cell cycle inhibition induced by hyperoxia or menadione exposure. Transient cell growth resistance was observed at the level of cell cycle phase distribution, Cdk2 activity, and DNA synthesis after 40 h hyperoxia. This differential resistance was associated with an inhibition of ROS production and lipid peroxidation induced by hyperoxia. After 64 h hyperoxic exposure, cell growth was completely abolished in both cell lines, despite elevated glutathione levels. However, in contrast to the GPx1-deficient cells, T47D-GPx-2 cells showed an increased capacity to recover from a cell cycle arrest mediated by a 64 h hyperoxic stress. Differential recovery was also observed at the ultrastructural level between Gpx1-proficient and -deficient cells. These data indicate that GPx1 played an important role in the cell capacity to recover from hyperoxic insults. The limited protection conferred by GPx1 during hyperoxia suggests that the deleterious effects were partially mediated by peroxide-derived free radicals, but also involved the action of nonperoxide-derived reactive species.  相似文献   

20.
Retinoids are promising agents for the prevention and treatment of several human malignancies including lung cancer. In this study, the effect of retinoic acid (RA) on cell growth and the mechanism of growth modulation were examined in human lung squamous carcinoma CH27 cells. Here we report that RA mediated the dose- and time-dependent growth arrest in G1 phase, accompanied by the up-regulation of p27(Kip1) and the down-regulation of the cyclin-dependent kinase 3 (Cdk3) and p21(CIP1/Waf1) proteins. Furthermore, RA-induced growth arrest of CH27 cells was also associated with increased retinoic acid receptor beta (RARbeta) and reduced c-Myc expression. However, RA had no effect on the levels of cyclins A, D1, D3, E, or H, or on Cdk2, Cdk4, Cdk5, CDk6, Cdk7, p16(Ink4A), p15(Ink4B), p53, or pRb proteins in CH27 cells. Evaluation of the kinase activity of cyclin-Cdk complexes showed that RA increases p27(Kip1) expression in CH27 cells leading to markedly reduced cyclin A/Cdk2 kinase activity and slightly reduced cyclin E/Cdk2 kinase activity, with no effect on cyclin D/Cdk4 and cyclin D/Cdk6 activities. Moreover, coincident with the decrease in kinase activity was a drastic increase in cyclin A-bound p27(Kip1). These results suggest that increases in the levels of p27(Kip1) and its binding to cyclin A, as well as reduction of Cdk3 protein expression, are strong candidates for the cell cycle regulator that prevents the entry into the S phase in RA-treated CH27 cells, with prolongation of G1 phase and inhibition of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号