首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preliminary studies have shown that asymmetric transbilayer distributions of phosphatidic acid (PA) can be induced by transmembrane pH gradients (delta pH) in large unilamellar vesicles [Hope et al. (1989) Biochemistry 28, 4181-4187]. Here the mechanism of PA transport is examined employing TNS as a fluorescent probe of lipid asymmetry. It is shown that the kinetics of PA transport are consistent with the transport of the uncharged (protonated) form. Transport of the neutral form can be rapid, exhibiting half-times for transbilayer transport of approximately 25 s at 45 degrees C. It is also shown that PA transport is associated with a large activation energy (28 kcal/mol) similar to that observed for phosphatidylglycerol. The maximum induced transbilayer asymmetry of PA corresponded to approximately 95% on the inner monolayer for vesicles containing 5 mol % PA.  相似文献   

2.
Transmembrane movement of dopamine in response to K+ or H+ ion gradients has been investigated. It is shown that dopamine can accumulate rapidly into large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine exhibiting either a K+ diffusion potential (delta psi; negative inside) or a pH gradient (inside acidic). This can result in entrapped dopamine concentrations of 30-40 mM and inside-outside concentration gradients of nearly 300-fold. The transmembrane dopamine gradients formed in LUV systems exhibiting delta pH (inside acidic) indicate that the transport process can be dictated by movement of the neutral form of dopamine which redistributes according to a simple Henderson-Hasselbach equilibrium. The mechanism of dopamine transport in response to a valinomycin-induced K+ potential is more complex. Although generation of a K+ diffusion potential results in acidification of the vesicle interior, the magnitude of the induced delta pH (approx. 1 pH unit) is insufficient to account for the dopamine concentration gradient achieved (greater than 200-fold). Further, data presented here suggest that higher uptake levels of dopamine can be achieved when certain anions (ATP and citrate) are entrapped within the LUV system. These anions may complex with the protonated form of dopamine creating a non-equilibrium trapping phenomena resulting in interior concentrations of dopamine in excess of that predicted by a simple Henderson-Hasselbach equilibrium.  相似文献   

3.
Techniques for determining large transbilayer pH gradients (delta pH) and membrane potentials (delta psi) induced in response to delta pH in large unilamellar vesicle liposomal systems by measuring the transbilayer redistribution of radiolabeled compounds have been examined. For liposomes with acidic interiors, it is shown that protocols using radiolabeled methylamine in conjunction with gel filtration procedures to remove untrapped methylamine provide accurate measures of delta pH in most situations. Exceptions include gel state lipid systems, where transbilayer equilibration processes are slow, and situations where the interior buffering capacity is limited. These problems can be circumvented by incubation at elevated temperatures and by using probes with higher specific activities, respectively. Determination of delta pH in vesicles with a basic interior using weak acid probes such as radiolabeled acetate in conjunction with gel filtration was found to be less reliable, and an alternative equilibrium centrifugation protocol is described. In the case of determinations of the membrane potentials induced in response to these pH gradients, probes such as tetraphenylphosphonium and thiocyanate provide relatively accurate measures of the delta psi induced. It is shown that the maximum transmembrane pH gradient that can be stably maintained by an egg phosphatidylcholine-cholesterol 100-nm-diam large unilamellar vesicle is approximately 3.7 units, corresponding to an induced delta psi of 220 mV or transbilayer electrical field of 5 x 10(5) V/cm.  相似文献   

4.
The influence of membrane pH gradients on the transbilayer distribution of some common phospholipids has been investigated. We demonstrate that the transbilayer equilibrium of the acidic phospholipids egg phosphatidylglycerol (EPG) and egg phosphatidic acid (EPA) can be manipulated by membrane proton gradients, whereas phosphatidylethanolamine, a zwitterionic phospholipid, remains equally distributed between the inner and outer monolayers of large unilamellar vesicles (LUVs). Asymmetry of EPG is examined in detail and demonstrated by employing three independent techniques: ion-exchange chromatography, 13C NMR, and periodic acid oxidation of the (exterior) EPG headgroup. In the absence of a transmembrane pH gradient (delta pH) EPG is equally distributed between the outer and inner monolayers of LUVs. When vesicles composed of either egg phosphatidylcholine (EPC) or DOPC together with 5 mol % EPG are prepared with a transmembrane delta pH (inside basic, outside acidic), EPG equilibrates across the bilayer until 80-90% of the EPG is located in the inner monolayer. Reversing the pH gradient (inside acidic, outside basic) results in the opposite asymmetry. The rate at which EPG equilibrates across the membrane is temperature dependent. These observations are consistent with a mechanism in which the protonated (neutral) species of EPG is able to traverse the bilayer. Under these circumstances EPG would be expected to equilibrate across the bilayer in a manner that reflects the transmembrane proton gradient. A similar mechanism has been demonstrated to apply to simple lipids that exhibit weak acid or base characteristics [Hope, M. J., & Cullis, P. R. (1987) J. Biol. Chem 262, 4360-4366]  相似文献   

5.
Streptococcus faecalis proton gradients and tetracycline transport.   总被引:3,自引:1,他引:2       下载免费PDF全文
The transport of chlortetracycline by Streptococcus faecalis is energy dependent. Addition of glucose to energy-depleted cells enhances both the transport rates and accumulation levels. Transport rates can be altered independently of glucose by treating cells with ionophores that increase or decrease the proton gradient. The transport of the antibiotic is linked only to the transmembrane pH difference, delta pH, and not the transmembrane electrical potential, delta psi. This conclusion was verified by quantitative measurements of delta pH, delta psi, and tetracycline accumulation levels. A linear correlation between delta pH and the tetracycline electrochemical potential was observed. Tetracycline most likely accumulates by the symport of protons in which the protons are bound to an anionic form of the antibiotic to form an uncharged molecule.  相似文献   

6.
Proton NMR spectroscopy was used to demonstrate that transmembrane pH gradients across single-bilayer vesicle membranes effect the transport and concentration of carboxylic acids. The results obtained indicate that this transport occurs via selective permeation of the membrane by the protonated (uncharged) form of the acid.  相似文献   

7.
The uptake of dibucaine into large unilamellar vesicles in response to proton gradients (delta pH; inside acidic) or membrane potentials (delta psi; inside negative) has been investigated. Dibucaine uptake in response to delta pH proceeds rapidly in a manner consistent with permeation of the neutral (deprotonated) form of the drug, reaching a Henderson-Hasselbach equilibrium where [dibucaine]in/[dibucaine]out = [H+]in/[H+]out and where the absolute amount of drug accumulated is sensitive to the buffering capacity of the interior environment. Under appropriate conditions, high absolute interior concentrations of the drug can be achieved (approximately 120 mM) in combination with high trapping efficiencies (in excess of 90%). Dibucaine uptake in response to delta psi proceeds more than an order of magnitude more slowly and cannot be directly attributed to uptake in response to the delta pH induced by delta psi. This induced delta pH is too small (less than or equal to 1.5 pH units) to account for the transmembrane dibucaine concentration gradients achieved and does not come to electrochemical equilibrium with delta psi. Results supporting the possibility that the charged (protonated) form of dibucaine can be accumulated in response to delta psi were obtained by employing a permanently positively charged dibucaine analogue (N-methyldibucaine). Further, the results suggest that delta psi-dependent uptake may depend on formation of a precipitate of the drug in the vesicle interior. The uptake of dibucaine into vesicles in response to ion gradients is of direct utility in drug delivery and controlled release applications and is related to processes of drug sequestration by cells and organelles in vivo.  相似文献   

8.
The flux of amino acids and other nutrient solutes such as phosphate across lipid bilayers (liposomes) is 105 slower than facilitated inward transport across biological membranes. This suggests that primitive cells lacking highly evolved transport systems would have difficulty transporting sufficient nutrients for cell growth to occur. There are two possible ways by which early life may have overcome this difficulty: (1) The membranes of the earliest cellular life-forms may have been intrinsically more permeable to solutes; or (2) some transport mechanism may have been available to facilitate transbilayer movement of solutes essential for cell survival and growth prior to the evolution of membrane transport proteins. Translocation of neutral species represents one such mechanism. The neutral forms of amino acids modified by methylation (creating protonated weak bases) permeate membranes up to 1010 times faster than charged forms. This increased permeability when coupled to a transmembrane pH gradient can result in significantly increased rates of net unidirectional transport. Such pH gradients can be generated in vesicles used to model protocells that preceded and were presumably ancestral to early forms of life. This transport mechanism may still play a role in some protein translocation processes (e.g., for certain signal sequences, toxins and thylakoid proteins) in vivo.Abbreviations LUV large unilamellar vesicle - pH transmembrane pH gradient - PAH polyaromatic hydrocarbon Correspondence to: A.C. Chakrabarti  相似文献   

9.
The uptake of derivatives of lysine and a pentapeptide (ala-met-leu-trp-ala) into large unilamellar vesicle (LUV) systems in response to transmembrane pH gradients has been examined. In these derivatives, the C-terminal carboxyl functions have been converted to methyl esters or amides. It is shown that the presence of a pH gradient (interior acidic) results in the rapid and efficient accumulation of these weak base amino acid and peptide derivatives into LUVs in a manner consistent with permeation of the neutral (deprotonated) form. It is suggested that this property may have general implications for mechanisms of transbilayer translocation of peptides, such as signal sequences, which exhibit weak base characteristics.  相似文献   

10.
The transmembrane movement of radiolabeled, nonmetabolizable glucose analogs in Streptococcus mutants Ingbritt was studied under conditions of differing transmembrane electrochemical potentials (delta psi) and pH gradients (delta pH). The delta pH and delta psi were determined from the transmembrane equilibration of radiolabeled benzoate and tetraphenylphosphonium ions, respectively. Growth conditions of S. mutants Ingbritt were chosen so that the cells had a low apparent phosphoenolpyruvate (PEP)-dependent glucose:phosphotransferase activity. Cells energized under different conditions produced transmembrane proton potentials ranging from -49 to -103 mV but did not accumulate 6-deoxyglucose intracellularly. An artificial transmembrane proton potential was generated in deenergized cells by creating a delta psi with a valinomycin-induced K+ diffusion potential and a delta pH by rapid acidification of the medium. Artificial transmembrane proton potentials up to -83 mV, although producing proton influx, could not accumulate 6-deoxyglucose in deenergized cells or 2-deoxyglucose or thiomethylgalactoside in deenergized, PEP-depleted cells. The transmembrane diffusion of glucose in PEP-depleted, KF-treated cells did not exhibit saturation kinetics or competitive inhibition by 6-deoxyglucose or 2-deoxyglucose, indicating that diffusion was not facilitated by a membrane carrier. As proton-linked membrane carriers have been shown to facilitate diffusion in the absence of a transmembrane proton potential, the results therefore are not consistent with a proton-linked glucose carrier in S. mutans Ingbritt. This together with the lack of proton-linked transport of the glucose analogs suggests that glucose transmembrane movement in S. mutans Ingbritt is not linked to the transmembrane proton potential.  相似文献   

11.
Dense granules, the storage organelles for 5-hydroxytryptamine in blood platelets, have been isolated from porcine platelets and are shown to transport 5-hydroxytryptamine in response to a transmembrane proton gradient (delta pH). Transport in the absence of delta pH is minimal, and it is shown that a rapid increase in transport takes place as delta pH increases. Direct measurements with [14C]methylamine show a delta pH of 1.1 units (acid inside) for intact granules. Osmotically active ghosts of dense granules from which 95% of the endogenous 5-hydroxytryptamine content has been released have also been prepared. Ghosts swell in the presence of ATP and Mg2+, and this swelling is shown to be due to the entry of protons via a process linked to ATP hydrolysis. Proton entry is also apparently linked to anion penetration in ghosts. Steady-state 5-hydroxytryptamine transport in ghosts is stimulated approx. 3-fold on the addition of ATP to the incubation medium, and the stimulation of 5-hydroxytryptamine transport in ghosts correlates with the formation of a transmembrane delta pH. Ghosts generate a delta pH of 1.1-1.3 pH units (acid inside) in the presence of 5 mM-ATP/2.5 mM-MgSO4. delta pH is generated within 3 min at 37 degrees C and is dissipated by the ionophore nigericin and by NH4Cl. It is shown that an Mg2+-stimulated ATPase activity is present on the ghost membrane, and inhibition of the ATPase leads to a corresponding decrease in 5-hydroxytryptamine transport. The results presented support the idea that 5-hydroxytryptamine transport into platelet dense granules is dependent on the presence of a transmembrane delta pH and, together with previous findings by others, suggest a generalized mechanism for biogenic amine transport into subcellular storage organelles.  相似文献   

12.
Synthesis of biogenic membranes requires transbilayer movement of lipid-linked sugar molecules. This biological process, which is fundamental in prokaryotic cells, remains as yet not clearly understood. In order to obtain insights into the molecular basis of its mode of action, we analyzed the structure-function relationship between Lipid II, the important building block of the bacterial cell wall, and its inner membrane-localized transporter FtsW. Here, we show that the predicted transmembrane helix 4 of Escherichia coli FtsW (this protein consists of 10 predicted transmembrane segments) is required for the transport activity of the protein. We have identified two charged residues (Arg145 and Lys153) within this segment that are specifically involved in the flipping of Lipid II. Mutating these two amino acids to uncharged ones affected the transport activity of FtsW. This was consistent with loss of in vivo activity of the mutants, as manifested by their inability to complement a temperature-sensitive strain of FtsW. The transport activity of FtsW could be inhibited with a Lipid II variant having an additional size of 420 Da. Reducing the size of this analog by about 274 Da resulted in the resumption of the transport activity of FtsW. This suggests that the integral membrane protein FtsW forms a size-restricted porelike structure, which accommodates Lipid II during transport across the bacterial cytoplasmic membrane.  相似文献   

13.
The mechanism of NO3- transport was examined in isolated plasma membrane vesicles from maize (Zea mays L., hybrid B73 X LH 51) roots using 36ClO3- as a radiotracer analog for NO3-. When an acid-exterior delta pH was imposed across the vesicle membrane, uptake of 36ClO3- was stimulated and the time course of radiolabel uptake displayed an overshoot phenomenon characteristic of the coupling of one solute gradient ot the movement of another solute. Evidence supporting delta pH as the driving force for 36ClO3- uptake included a dependence of the overshoot peak and initial rate of 36ClO3- uptake on the magnitude of the imposed delta pH, the occurrence of delta pH-driven 36ClO3- uptake in the presence of KSCN/valinomycin, and the ability of an imposed delta pH to drive 36ClO3- uptake when radiolabel was equilibrated across the membrane. When delta pH-driven 36ClO3- transport was examined in the presence of NO3-, radiolabel uptake was inhibited in a competitive manner. This was consistent with the carrier having the capacity to use either ClO3- or NO3- and supports the use of this radiotracer as an analog for NO3- in transport studies. When delta pH-driven 36ClO3- uptake was examined as a function of 36ClO3- concentration and delta pH, saturation kinetics were observed and the magnitude of the imposed delta pH affected the Km but not the Vmax for 36ClO3- uptake. This suggested an ordered binding mechanism where 36ClO3- would bind to the protonated form of the carrier prior to translocation. Radiolabeled 36ClO3- uptake was inhibited by treatment of the vesicles with phenylglyoxal, suggesting the involvement of arginine moieties in the process of transport. Taken together, these results support the presence of a H+/NO3- symport carrier at the plasma membrane which could be involved in mediating energy-dependent NO3- uptake into plant cells.  相似文献   

14.
The K+ diffusion potential-induced association of synthetic model peptides carrying a single positive charge originating from the NH2-terminal amino function with large unilamellar vesicles (LUV) consisting of phosphatidylcholine (PC) has been reported previously (de Kroon, A. I. P. M., J. de Gier, and B. de Kruijff. 1989. Biochim. Biophys. Acta. 981:371-373). To determine the vesicle localization of the associated peptides, fluorescence measurements utilizing the peptides' tryptophan residue as intrinsic fluorescent probe were performed. The application in these measurements, of vesicles that exhibit an asymmetric transbilayer distribution of brominated PC which is a quencher of tryptophan fluorescence, unequivocally demonstrated that the peptide H3N(+)-AIMLWA-Ome (AIXme+) is accumulated in the interface of the inner leaflet of the vesicle membrane in response to the valinomycin-induced K+ diffusion potential (negative inside). The relative contributions of the membrane potential (delta psi) and the pH gradient (delta pH, acidic inside) induced by the K+ diffusion potential, to the process have been assessed. An analysis of the pH and delta pH dependencies of the process demonstrated that the K+ diffusion potential-induced peptide accumulation is largely determined by a redistribution of peptide according to the transbilayer pH gradient, in agreement with a translocation across the vesicle membrane of the neutral, deprotonated form of the peptide. The general validity of the mechanism proposed for the vesicle-uptake of AIXme+ has been examined by extending the experiments to peptide analogues with a single negative charge and to peptides with two positive charges, and by investigating the effect of incorporating the acidic phospholipid cardiolipin (CL) into the LUV. The incorporation of CL appeared not to affect the K+ diffusion, potential-induced vesicle uptake of AIXme+. The peptide H3N(+)-RMLWA-Ome (RXme2+) showed a small delta pH independent fluorescence response to the delta psi upon raising the CL content of the vesicles to 25%.  相似文献   

15.
We have investigated the influence of transmembrane pH gradients across large unilamellar vesicle membranes on the transbilayer distributions of simple lipids with weak base and weak acid characteristics. Trinitrobenzenesulfonic acid labeling results consistent with a rapid and complete migration of stearylamine and sphingosine to the inner monolayer of the large unilamellar vesicles are observed when the large unilamellar vesicles' interior is acidic. Alternatively, when the vesicle interior is basic, oleic and stearic acid cannot be removed by external bovine serum albumin, indicating a localization in the inner monolayer. Moreover, effects corresponding to the decrease in external surface charge predicted upon the migration of stearylamine or stearic acid to the inner monolayer are readily detected employing ion exchange chromatography. These results are consistent with transbilayer distributions of these agents dictated by a Henderson-Hasselbach equilibrium. The possible implications for metabolic regulation by pH gradients, as well as factors giving rise to phospholipid transbilayer asymmetry, are discussed.  相似文献   

16.
Net transport of ATP-Mg or ADP in exchange for phosphate in isolated rat liver mitochondria has been shown to be an electroneutral process mediated by the ATP-Mg/Pi carrier. We compared the steady state distribution ratios of phosphate, ATP-Mg, and ADP at a pH of 7.4 to determine whether the divalent or monovalent form of these anions is the transported substrate. The log of the divalent ATP-Mg distribution ratio (in/out) approached the log of the divalent phosphate distribution ratio (approximately 0.85), which was approximately twice the value of the delta pH (approximately 0.40) across the inner mitochondrial membrane. This steady state relationship held under several different conditions, e.g. when the medium ATP concentration was varied or if the phosphate gradient was modified by partial uncoupling with the proton ionophore, carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Unidirectional ADP efflux in exchange for external ADP or ATP-Mg was stimulated by an increase in matrix H+. The log of the trivalent ADP distribution ratio (approximately 1.20) approached 3 times the value of delta pH. All these data are consistent with the model of an electroneutral exchange of divalent phosphate (HPO2-4) for divalent ATP-Mg (ATP-Mg2-) or for divalent protonated ADP (HADP2-). We conclude that this transport mechanism accounts for the adenine nucleotide concentration gradient that normally exists between the matrix and external medium.  相似文献   

17.
Escherichia coli cells were used to study the mechanism of penetration of local anesthetics and the relationship between permeation and functional properties. We show that both the neutral and the protonated form of dibucaine can be accumulated in the cells. Accumulation of the protonated form occurs in response to a transmembrane electrical potential (negative inside) and results in high trapped concentrations (70 mM). Accumulation can lead to an alkalinization of the internal pH. Low concentrations of dibucaine stimulate the respiration, increase the transmembrane electrical potential and raise the accumulation of solutes. Inhibition of these functions occurs at higher concentrations of the drug. Furthermore, the drug concentration required to inhibit these functions is smaller at alkaline external pH than at acidic external pH, suggesting that the inhibition is mainly due to the neutral form of the anesthetics. Other hydrophobic amines also stimulate and inhibit different membrane functions, their efficiency being correlated to their lipophilicity.  相似文献   

18.
M Ikeda-Saito 《Biochemistry》1987,26(14):4344-4349
The ligand binding properties of spleen myeloperoxidase, a peroxidase formerly called "the spleen green hemeprotein", were studied as functions of temperature and pH, using chloride and cyanide as exogenous ligands. Ligand binding is influenced by a proton dissociable group with a pKa of 4. The protonated, uncharged form of cyanide binds to the unprotonated form of the enzyme, while chloride ion binds to the enzyme when this group is protonated. In both cyanide and chloride binding, the pH-dependent change in the apparent ligand affinity is due to a change in the apparent association rate with pH. The proton dissociable group on the enzyme involved in ligand binding has a delta H value of about 8 kcal . mol-1. The present results suggest that this ionizable group is the imidazole group of a histidine residue located near the ligand binding site.  相似文献   

19.
D-Gluconate uptake was studied in whole cells of Arthrobacter pyridinolis; the uptake activity was inducible, mutable and showed saturation kinetics (Km = 5 micrometer). Uptake of D-gluconate was not mediated by a phosphoenol-pyruvate : hexose phosphotransferase system, nor was it directly energized by ATP. A transmembrane pH gradient, delta pH, of --63 mV was generated by A. pyridinolis cells at pH 6.5, while at pH 7.5, delta pH = 0. Addition of 8 micrometer D-gluconate significantly reduced the delta pH. The transmembrane electrical potential, delta psi, which was --87 mV over a range of pH from 5.5 to 7.5, was unaffected by the presence of substrate. D-Gluconate accumulated at the same rate and as the protonated solute, at both pH 6.5 and 7.5. Experiments in which a diffusion potential was generated in cyanide-treated cells, indicated that the delta psi did not energize transport. Rather, the rate of D-gluconate uptake metabolism: (a) treatment of cells with valinomycin or nigericin, under conditions in which there was a loss of intracellular potassium, inhibited both D-gluconate uptake and the metabolism of pre-accumulated D-gluconate; (b) the effects of cyanide and azide on D-gluconate uptake were much more severe at pH 6.5 than pH 7.5, a pattern which paralleled the effects of these inhibitors on D-gluconate metabolism; (c) extraction and chromatography of intracellular label from D-gluconate uptake revealed that accumulation of unaltered D-gluconate was negligible; (d) a series of mutant strains with lower D-gluconate kinase activities also exhibited low rates of D-gluconate uptake; (e) spontaneous revertants of these mutant strains consistently regained both D-gluconate kinase activity and wild type levels of uptake.  相似文献   

20.
Lactose-grown cells of Bacillus alcalophilus actively transported methylthio-beta, D-galactoside (TMG) in a range of pH values from 7.5 to 10.5 with a pH optimum at 8.5. The TMG was accumulated in a chemically unmodified form, and cell extracts failed to catalyze either ATP or P-enolpyruvate-dependent phosphorylation of TMG. At pH 8.5, the lactose-grown cells exhibited a transmembrane proton gradient (deltapH) of 1.38 units, interior acid, and a transmembrane electrical potential (delta psi) of -132 mV. Accordingly, the total protonmotive force at this pH was very low, -51mV. Several lines of evidence indicate that the protonmotive force or delta psi did not directly energize TMG transport but, rather, that ATP was directly required: (a) in cells treated with arsenate so that the delta psi was unaffected and cellular ATP levels were markedly lowered, TMG transport was inhibited in proportion to the reduction of cellular ATP, while electrogenic alpha-aminoisobutyric acid transport was not; (b) when a valinomycin-induced potassium diffusion potential was established in starved cells, alpha-aminoisobutyric acid transport, but not TMG transport, was stimulated; and (c) in a series of experiments in which the delta psi was rapidly abolished by treatment with gramicidin, ATP levels declined slowly and the rate of TMG transport correlated directly with ATP levels rather than with the delta psi. Consumption of cellular ATP concomitant with TMG transport could be demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号