首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
《The Journal of cell biology》1993,123(4):1007-1016
The interaction of lymphocyte function-associated antigen-1 (LFA-1) with its ligands mediates multiple cell adhesion processes of capital importance during immune responses. We have obtained three anti-ICAM-3 mAbs which recognize two different epitopes (A and B) on the intercellular adhesion molecule-3 (ICAM-3) as demonstrated by sequential immunoprecipitation and cross-competitive mAb-binding experiments. Immunoaffinity purified ICAM-3-coated surfaces were able to support T lymphoblast attachment upon cell stimulation with both phorbol esters and cross-linked CD3, as well as by mAb engagement of the LFA-1 molecule with the activating anti-LFA-1 NKI-L16 mAb. T cell adhesion to purified ICAM-3 was completely inhibited by cell pretreatment with mAbs to the LFA-1 alpha (CD11a) or the LFA-beta (CD18) integrin chains. Anti-ICAM-3 mAbs specific for epitope A, but not those specific for epitope B, were able to trigger T lymphoblast homotypic aggregation. ICAM-3-mediated cell aggregation was dependent on the LFA-1/ICAM-1 pathway as demonstrated by blocking experiments with mAbs specific for the LFA-1 and ICAM-1 molecules. Furthermore, immunofluorescence studies on ICAM-3-induced cell aggregates revealed that both LFA-1 and ICAM-1 were mainly located at intercellular boundaries. ICAM-3 was located at cellular uropods, which in small aggregates appeared to be implicated in cell-cell contacts, whereas in large aggregates it appeared to be excluded from cell-cell contact areas. Experiments of T cell adhesion to a chimeric ICAM-1-Fc molecule revealed that the proaggregatory anti-ICAM-3 HP2/19 mAb was able to increase T lymphoblast attachment to ICAM-1, suggesting that T cell aggregation induced by this mAb could be mediated by increasing the avidity of LFA-1 for ICAM-1. Moreover, the HP2/19 mAb was costimulatory with anti-CD3 mAb for T lymphocyte proliferation, indicating that enhancement of T cell activation could be involved in ICAM-3-mediated adhesive phenomena. Altogether, our results indicate that ICAM-3 has a regulatory role on the LFA-1/ICAM-1 pathway of intercellular adhesion.  相似文献   

2.
3.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

4.
Thrombospondin-1 (TSP-1), an extracellular matrix protein, has a multimodular structure and each domain specifies a distinct biological function through interaction with a specific ligand. In this study we found that exogenously added TSP-1 inhibits phorbol myristate acetate (PMA)/LPS-induced homotypic aggregation of human monocytic U937 cells, whereas the 70-kDa fragment of TSP-1 generated by the proteolytic cleavage of the intact molecule promotes the homotypic aggregation. The aggregation was also inhibited by anti-CD47 mAb or the 4N1K peptide, of which sequence is derived from the CD47-binding site of TSP-1 and absent in the 70-kDa fragment. In contrast, the augmented cell aggregation by the 70-kDa fragment was hampered by anti-CD36 mAb or antibody against the CD36-binding site of TSP-1. The cell aggregation of U937 cells was completely blocked, even in the presence of the 70-kDa fragment, by mAb against leukocyte function associated antigen-1 (LFA-1) or intercellular adhesion molecule-1 (ICAM-1). We therefore propose that TSP-1 may regulate LFA-1/ICAM-1-mediated cell adhesion of monocytes/macrophages by either the inhibitory effect through CD47 or the promoting effect through CD36 depending on which domain/fragment is functional in a given biological setting.  相似文献   

5.
The VLA-4 (CD49d/CD29) integrin is the only member of the VLA family expressed by resting lymphoid cells that has been involved in cell-cell adhesive interactions. We here describe the triggering of homotypic cell aggregation of peripheral blood T lymphocytes and myelomonocytic cells by mAbs specific for certain epitopes of the human VLA alpha 4 subunit. This anti-VLA-4-induced cell adhesion is isotype and Fc independent. Similar to phorbol ester-induced homotypic adhesion, cell aggregation triggered through VLA-4 requires the presence of divalent cations, integrity of cytoskeleton and active metabolism. However, both adhesion phenomena differed at their kinetics and temperature requirements. Moreover, cell adhesion triggered through VLA-4 cannot be inhibited by cell preincubation with anti-LFA-1 alpha (CD11a), LFA-1 beta (CD18), or ICAM-1 (CD54) mAb as opposed to that mediated by phorbol esters, indicating that it is a LFA-1/ICAM-1 independent process. Antibodies specific for CD2 or LFA-3 (CD58) did not affect the VLA-4-mediated cell adhesion. The ability to inhibit this aggregation by other anti-VLA-4-specific antibodies recognizing epitopes on either the VLA alpha 4 (CD49d) or beta (CD29) chains suggests that VLA-4 is directly involved in the adhesion process. Furthermore, the simultaneous binding of a pair of aggregation-inducing mAbs specific for distinct antigenic sites on the alpha 4 chain resulted in the abrogation of cell aggregation. These results indicate that VLA-4-mediated aggregation may constitute a novel leukocyte adhesion pathway.  相似文献   

6.
在ConA和固相抗CD_3单抗刺激系统中,应用抗LFA-1/ICAM-1单抗,研究其在胸腺细胞活化中的功能作用,结果证明,培养初期加入可溶性抗LFA-1可完全阻断ConA活化胸腺细胞增殖,对固相抗CD3单抗诱导的胸腺细胞活化也表现出相同的抑制效应,但对ConA刺激24h后的胸腺细胞应答以及IL-1 IL-2诱导的胸腺细胞增殖无影响。在可溶性抗LFA-1单抗的存在下,ConA诱导胸腺细胞合成IL-2和IL-6的能力显著下降,IL-2R的表达降低。此外,当用固相抗LFA-1和固相抗CD3或用二抗交联LFA-1和CD3刺激胸腺细胞时,抗LFA-1则具有明显地促增殖应答效应,单纯固相抗LFA-1刺激或交联LFA-1均无诱导活化作用,研究结果表明,LFA-1是未成熟胸腺细胞活化的重要辅助分子之一,它可参与TCR/CD3途径介导的早期活化信号的传导,并为胸腺细胞表达IL-2R 和产生IL-2可能提供复合刺激信号。  相似文献   

7.
We have investigated the binding in vitro of activated thymocytes to thymic epithelial (TE) cells, and studied the effect of up-regulation of TE cell surface intracellular adhesion molecule 1 (ICAM-1) and HLA-DR by IFN-gamma on the ability of TE cells to bind to both resting and activated human thymocytes. TE cell binding to activated and resting thymocytes was studied by using our previously described suspension assay of TE-thymocyte conjugate formation. We found that activated mature and immature thymocytes bound maximally at 37 degrees C to IFN-gamma-treated ICAM-1+ and HLA-DR+ TE cells and this TE-activated thymocyte binding was inhibited by antibodies to LFA-1 alpha-chain (CD11a) (68.1 +/- 5.6% inhibition, p less than 0.01) and ICAM-1 (73.9 +/- 7.7% inhibition, p less than 0.05). Neither anti-HLA-DR antibody L243 nor anti-MHC class I antibody 3F10 inhibited IFN-gamma-treated TE binding to activated thymocytes. As with antibodies to LFA-3 and CD2, antibodies to LFA-1 and ICAM-1 also inhibited PHA-induced mature thymocyte activation when accessory signals were provided by TE cells in vitro. Finally, LFA-1 and ICAM-1 were expressed early on in human thymic fetal ontogeny in patterns similar to those seen in postnatal thymus. Taken together, these data suggest that resting mature and immature thymocytes bind to TE cells via the CD2/LFA-3 ligand pair, whereas activated thymocytes bind via both CD2/LFA-3 and LFA-1/ICAM-1 ligand systems. We postulate that IFN-gamma produced intrathymically may regulate TE expression of ICAM-1 and therefore potentially may regulate TE cell binding to activated thymocytes beginning in the earliest stages of human thymic development.  相似文献   

8.
We have shown that human thymic epithelial (TE) cells produce IL-1 alpha, IL-1 beta, and TE cells bind to thymocytes by CD2 and LFA-1 molecules on thymocytes and LFA-3, ICAM-1 on TE cells. We investigated whether ligand binding to LFA-3 on human TE cells can modulate TE cell IL-1 production. First, we investigated the ability of human thymocytes to regulate IL-1 release by TE cells. Both autologous and allogenic emetine-treated thymocytes when cultured with TE cells augmented IL-1 release by TE cells. The augmentation of IL-1 release was cell density dependent. Inasmuch as the interaction between thymocytes and TE cells is mediated in part by CD2 molecules on thymocytes and LFA-3 molecules on TE cells we next determined the effect on IL-1 release of ligand binding (anti-LFA-3 mAb TS2/9) to TE cell surface LFA-3. Purified anti-LFA-3 mAb augmented IL-1 release in a concentration-dependent fashion. The anti-LFA-3-mediated augmentation of IL-1 release required both new protein and RNA synthesis as shown by the ability of cycloheximide and actinomycin-D to inhibit augmentation of IL-1 production by TE cells, and by direct quantitation of IL-1 alpha and IL-1 beta mRNA by Northern blot analysis. Both F(ab)'2 and Fab' fragments of anti-LFA-3 mAb augmented IL-1 alpha and IL-1 beta mRNA production, indicating that monovalent binding to cell surface LFA-3 was sufficient to provide the inducing signal. The identification of LFA-3, the cell surface ligand for thymocyte CD2 molecules, as a molecule via which TE cell-derived cytokine production may be regulated suggests a mechanism at the cell surface by which direct TE cell-thymocyte interaction might result in the triggering of local IL-1 release within the human thymic microenvironment.  相似文献   

9.
The role of LFA-1/ICAM-1 interactions during murine T lymphocyte development.   总被引:14,自引:0,他引:14  
We have examined the expression and function of the cell adhesion molecules LFA-1 (CD11a/CD18), ICAM-1 (CD54), and ICAM-2 in murine fetal thymic ontogeny and in the adult thymus. On fetal days 14 and 15, 40 to 50% of thymocytes coexpress high levels of LFA-1 and ICAM-1, as determined by flow cytometry. By day 16, more than 90% of fetal thymocytes are LFA-1+ ICAM-1hi, and all IL-2R+ cells are located in this population. Although LFA-1 expression remains unchanged thereafter, ICAM-1 expression appears to be differentially regulated in different thymocyte subpopulations, with CD4+8+ cells being ICAM-1lo and CD4-8- thymocytes remaining ICAM-1hi. ICAM-2 surface expression is dull on both fetal and adult thymocytes. Surprisingly, the expression of ICAM-1 is differentially up-regulated on T cells having a mature phenotype in thymus and in peripheral lymphoid organs, with CD8+ T cells bearing the highest amount of surface ICAM-1. Addition of anti-ICAM-1 or anti-LFA-1 antibodies to fetal thymic organ cultures results in the impaired generation of CD4+8+ cells. These results indicate that LFA-1/ICAM-1 interactions facilitate murine thymic development and suggest that cell adhesion molecules mediate important events in T cell differentiation.  相似文献   

10.
Leukocyte function associated antigen 1 (LFA-1) and intercellular adhesion molecule 1 (ICAM-1) have been shown to be critical for adhesion process and immune response. Modulation or inhibition of the interaction between LFA-1/ICAM-1 interactions can result in therapeutic effects. Our group and others have shown that peptides derived from ICAM-1 or LFA-1 inhibit adhesion in a homotypic T-cell adhesion assay. It is likely that the peptides derived from ICAM-1 bind to LFA-1 and peptides derived from LFA-1 bind to ICAM-1 and inhibit the adhesion interaction. However, there are no concrete experimental evidence to show that peptides bind to either LFA-1 or ICAM-1 and inhibit the adhesion. Using NMR, CD and docking studies we have shown that an LFA-1 derived peptide binds to soluble ICAM-1. Docking studies using "autodock" resulted in LFA-1 peptide interacting with the ICAM-1 protein near Glu34. The proposed model based on our experimental data indicated that the LFA-1 peptide interacts with the protein via three intermolecular hydrogen bonds. Hydrophobic interactions also play a role in stabilizing the complex.  相似文献   

11.
A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1   总被引:139,自引:0,他引:139  
Homotypic adhesion by phorbol ester-stimulated lymphocytes requires LFA-1 and Mg+2 and does not involve like-like interactions between LFA-1 molecules on adjacent cells. The latter finding suggested that a second molecule, distinct from LFA-1, also participates in LFA-1-dependent adhesion. The identification of such a molecule was the object of this investigation. After immunization with LFA-1-deficient EBV-transformed lymphoblastoid cells, a MAb was obtained that inhibits phorbol ester-stimulated aggregation of LFA-1+ EBV lines. This MAb defines a novel cell surface molecule, which is designated intercellular adhesion molecule 1 (ICAM-1). ICAM-1 is distinct from LFA-1 in both cell distribution and structure. In SDS-PAGE, ICAM-1 isolated from JY cells is a single chain of Mr = 90,000. As shown by MAb inhibition, ICAM-1 participates in phorbol ester-stimulated adhesion reactions of B lymphocyte and myeloid cell lines and T lymphocyte blasts. However, aggregation of one T lymphocyte cell line (SKW-3) was inhibited by LFA-1 but not ICAM-1 MAb. It is proposed that ICAM-1 may be a ligand in many, but not all, LFA-1-dependent adhesion reactions.  相似文献   

12.
Abstract

Leukocyte function associated antigen 1 (LFA-1) and intercellular adhesion molecule 1 (ICAM-1) have been shown to be critical for adhesion process and immune response. Modulation or inhibition of the interaction between LFA-1/ICAM-1 interactions can result in therapeutic effects. Our group and others have shown that peptides derived from ICAM- 1 or LFA-1 inhibit adhesion in a homotypic T-cell adhesion assay. It is likely that the peptides derived from ICAM-1 bind to LFA-1 and peptides derived from LFA-1 bind to ICAM- 1 and inhibit the adhesion interaction. However, there are no concrete experimental evidence to show that peptides bind to either LFA-1 or ICAM-1 and inhibit the adhesion. Using NMR, CD and docking studies we have shown that an LFA-1 derived peptide binds to soluble ICAM-1. Docking studies using “autodock” resulted in LFA-1 peptide interacting with the ICAM-1 protein near Glu34. The proposed model based on our experimental data indicated that the LFA-1 peptide interacts with the protein via three intermolecular hydrogen bonds. Hydrophobic interactions also play a role in stabilizing the complex.  相似文献   

13.
Engagement of the surface Ig receptor with anti-IgM antibodies stimulates murine B lymphocytes to markedly increase their expression of the cell adhesion molecules ICAM-1 and LFA-1. Stimulated B cells display increased homotypic adhesiveness and form spontaneous heterotypic conjugates with T lymphocytes. This latter T-B cell interaction is further enhanced if T cells have been previously activated with phorbol esters. In all cases, the formation of cell-cell conjugates is dependent on LFA-1-ICAM-1-mediated interactions as assessed in mAb blocking experiments. B lymphocytes stimulated with anti-IgM display a marked increase in binding to ICAM-1-transfected L cells. This cell-cell interaction is inhibited by anti-LFA-1 mAb binding to the B lymphocyte. Together, these results demonstrate that there is an induction of both ICAM-1 and LFA-1 on stimulated B cells and a corresponding increase in the adhesiveness of these cells. These findings suggest that Ag binding to the surface Ig receptor could prepare a B lymphocyte for subsequent interaction with a T lymphocyte. This provides insight into how efficient T-B collaboration may occur between very infrequent Ag-specific lymphocytes.  相似文献   

14.
15.
Anti-CD9 mAb are known agonists of platelet aggregation, but have not been implicated in cell-cell adhesion. We show here in an experimental system that the anti-CD9 mAb 50H.19, ALB6, and BA-2 can induce rapid, and irreversible, homotypic aggregation of the CD9-positive pre-B lymphoblastoid cell lines NALM-6 and HOON, but not of the CD9-negative B cell line Raji. The specificity of the response is indicated by the failure to effect aggregation with mAb directed to CD24, or to HLA class I Ag. The initiation of strong homotypic aggregates of lymphoid cells is a property ascribed to lymphocyte function-associated Ag-1 (LFA-1), a member of the beta 2 subfamily of leukocyte integrins. We show that CD9-induced aggregation is an active process which proceeds at 37 degrees C, but not at 4 degrees C, requires the expenditure of metabolic energy, and a functioning cytoskeleton, and is not inhibited by Arg-Gly-Asp-Ser peptide. These are properties described for LFA-1-mediated aggregation. However, because beta 2-integrins are not expressed on NALM-6 or HOON cells, they are not the mediators of CD9-induced aggregation. In contrast to LFA-1-mediated adhesion which is Mg2+ dependent, CD9-induced adhesion has an absolute requirement for Ca2+, but not Mg2+, indicating that a Ca2(+)-dependent event is sufficient for adhesion. However, Mg2+ enhances adhesion even at optimal concentrations of Ca2+, implicating an additional Mg2(+)-dependent event which requires Ca2+ to be effective. These findings suggest that CD9 Ag regulates a novel mechanism for promoting tight cell-cell adhesion which requires both Ca2+ and Mg2+ for optimal expression.  相似文献   

16.
Functional studies demonstrate that T cell activation often requires not only occupancy of the TCR but costimulatory interactions of other molecules, which remain largely undefined. We have tested the hypothesis that LFA-1 interaction with its ligand intercellular adhesion molecule 1 (CD54) (ICAM-1) is such a costimulatory interaction in a model system using biochemically purified ICAM-1 and TCR cross-linking by anti-CD3 mAb OKT3 immobilized on plastic. Resting T cells do not respond to OKT3 mAb immobilized on plastic. However ICAM-1 deposited on plastic together with the nonmitogenic immobilized OKT3 results in a potent activating stimulus. This costimulation cannot be readily accounted for by ICAM-1-mediated adhesion but is consistent with a role in signaling, which is observed in ICAM-1-mediated augmentation of activation induced by PMA/ionomycin. The ability of ICAM-1 to costimulate with immobilized CD3 contrasts with minimal costimulatory activity of cytokines IL-1 beta, IL-2, and IL-6. The proliferative response to co-immobilized OKT3 and ICAM-1 is dependent on the IL-2R, which is induced only in the presence of both OKT3 and ICAM-1. The present data demonstrate that LFA-1/ICAM-1 interaction is a potent costimulus for TCR-mediated activation; this observation, interpreted in light of previous reports, suggests that LFA-1/ICAM-1 is of major physiologic importance as a costimulatory signal.  相似文献   

17.
Transmembrane signals generated following mAb binding to CD19, CD20, CD39, CD40, CD43, Leu-13 Ag, and HLA-D region gene products induced rapid and strong homotypic adhesion in a panel of human B cell lines. Lower levels of adhesion were also observed after engagement of CD21, CD22, and CD23. Adhesion induced by mAb binding to these Ag was identical with respect to the kinetics of adhesion and the morphology of the resulting cellular aggregates, and was distinct from PMA-induced adhesion in both of these properties. Adhesion was not observed in response to mAb binding to MHC class I, CD24, CD38, CD44, CD45RA, or CD72. In contrast to B cell lines, homotypic adhesion was not induced in two pre-B cell lines, in spite of their high level expression of CD19 and HLA-D. Adhesion induced by suboptimal stimulation through these surface Ag or by PMA was mediated primarily through LFA-1 and ICAM-1. However, optimal stimulation through CD19, CD20, CD39, CD40, and HLA-D induced strong homotypic adhesion that was not blocked by anti-LFA-1 mAb. This alternate pathway of adhesion was also observed in LFA-1-deficient cell lines and in the presence of EDTA, suggesting that adhesion was not mediated by integrins. Adhesion in response to engagement of cell-surface Ag was unaffected by H7 or genestein, but was significantly inhibited by staurosporine, and was completely ablated by sphingosine and herbimycin. These studies indicate that engagement of multiple B cell-surface molecules initiates a signal transduction cascade that involves tyrosine kinases but not protein kinase C, and which leads to homotypic adhesion. Furthermore, adhesion was mediated by at least two distinct cell-surface adhesion receptors: LFA-1/ICAM-1 and a heretofore unknown adhesion receptor.  相似文献   

18.
Activation of human-purified T cells can be mediated by pairwise combinations of monoclonal antibodies directed against T11.1 and T11.2 epitopes on the CD2 molecule. Monoclonal antibodies (mAbs) reactive with either the alpha and beta chains of the lymphocyte-function-associated antigen-1 (LFA-1) molecule or one of its ligands, intercellular adhesion molecule-1 (ICAM-1), were found to accelerate anti-CD2-induced proliferation. This effect was seen on thymocytes and resting or preactivated T cells (phytohemagglutinin blasts and alloproliferative T cell clones) and could be observed, following the introduction of anti-LFA-1 or -ICAM-1 mAbs, up to 50 hr after the CD2 stimulatory signal. This effect was equally abrogated by 55 kDa anti-interleukin-2 (IL-2) receptor mAb, but neither the expression of IL-2 receptor nor the production of IL-2 was modified. The effects of anti-LFA-1 or anti-ICAM-1 on T cell activation through the CD2 pathway were therefore opposite to those observed in the CD3 pathway, where both mAbs strongly delayed T cell proliferation.  相似文献   

19.
We examined the relative contributions of LFA-1, Mac-1, and ICAM-3 to homotypic neutrophil adhesion over the time course of formyl peptide stimulation at shear rates ranging from 100 to 800 s-1. Isolated human neutrophils were sheared in a cone-plate viscometer and the kinetics of aggregate formation was measured by flow cytometry. The efficiency of cell adhesion was computed by fitting the aggregate formation rates with a model based on two-body collision theory. Neutrophil homotypic adhesion kinetics varied with shear rate and was most efficient at 800 s-1, where approximately 40% of the collisions resulted in adhesion. A panel of blocking Abs to LFA-1, Mac-1, and ICAM-3 was added to assess the relative contributions of these molecules. We report that 1) LFA-1 binds ICAM-3 as its primary ligand supporting homotypic adhesion, although the possibility of other ligands was also detected. 2) Mac-1 binding to an unidentified ligand supports homotypic adhesion with an efficiency comparable to LFA-1 at low shear rates of approximately 100 s-1. Above 300 s-1, however, Mac-1 and not LFA-1 were the predominant molecules supporting cell adhesion. This is in contrast to neutrophil adhesion to ICAM-1-transfected cells, where LFA-1 binds with a higher avidity than Mac-1 to ICAM-1. 3) Following stimulation, the capacity of LFA-1 to support aggregate formation decreases with time at a rate approximately 3-fold faster than that of Mac-1. The results suggest that the relative contributions of beta2 integrins and ICAM-3 to neutrophil adhesion is regulated by the magnitude of fluid shear and time of stimulus over a range of blood flow conditions typical of the venular microcirculation.  相似文献   

20.
We have shown that intercellular adhesion molecule-1 (ICAM-1) (CD54) positive cells are mainly responsible for the natural cytotoxic function of human blood lymphocytes. The evidences were the inhibition of cytotoxicity by anti-ICAM-1 (LB-2) monoclonal antibodies (mAb) and the loss of lytic activity after removal of the ICAM-1+ cells. In addition, the cytotoxic potential of the separated ICAM-1- lymphocyte population after activation appeared in parallel with the expression of this molecule. The ICAM-1+ lymphocytes lysed both LFA-1 (CD11a/CD18 or Leu-CAMa) positive and negative cell lines, and pretreatment of the effectors with the LB-2 mAb also inhibited the lysis of LFA-1- targets. The results point to a yet unrecognized role of ICAM-1 on the lymphocytes. Kinetics experiments suggested that pretreatment of lymphocytes with alpha-ICAM-1 (LB-2) mAb did not inhibit the promptly established lytic interactions but influenced later events, recycling and/or recruitment of effectors. It is possible that the cytotoxic potential is regulated by contacts between the members of the lymphocyte population and that these events occur via their ICAM-1 and LFA-1. Exposure of lymphocytes to NK-sensitive targets for 16 hr elevated their cytotoxic potential. The function of activated lymphocytes was not inhibited by the LB-2 mAb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号