首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We have analysed the ribosomal DNA of Calliphora erythrocephala, a Dipteran fly of the same sub-order as Drosophila melanogaster, through a series of rDNA2 fragments cloned in a plasmid vector. We have mapped the sites for eight restriction enzymes within these plasmids, and positioned the regions coding for the 18 S and 28 S rRNAs within the maps of selected plasmids using the S1 endonuclease mapping procedure of Berk & Sharp (1977). This analysis establishes that some rDNA cistrons of C. erythrocephala contain an “intron” (Gilbert, 1978) which interrupts the 28 S coding region at the same position as that of D. melanogaster rDNA. Two introns of 2.85 kilobases in length and part of a longer, sequence-related variant were isolated in these cloned fragments. Restriction enzyme site analysis and preliminary hybridization data indicate that the 2.85 kb intron of C. erythrocephala is largely unrelated in sequence to the two classes of D. melanogaster rDNA introns.  相似文献   

5.
J L Woolford  L M Hereford  M Rosbash 《Cell》1979,18(4):1247-1259
Yeast mRNA enriched for ribosomal protein mRNA was obtained by isolating poly(A)+ small mRNA from small polysomes. A comparison of cell-free translation of this small mRNA and total mRNA, and electrophoresis of the products on two-dimensional gels which resolve most yeast ribosomal proteins, demonstrated that a 5-10 fold enrichment for ribosomal protein mRNA was obtained. One hundred different recombinant DNA molecules possibly containing ribosomal protein genes were selected by differential colony hybridization of this enriched mRNA and unfractionated mRNA to a bank of yeast pMB9 hybrid plasmids. After screening twenty-five of these candidates, five different clones were found which contain yeast ribosomal protein gene sequences. The yeast mRNAs complementary to these five plasmids code for 35S-methionine-labeled polypeptides which co-migrate on two-dimensional gels with yeast ribosomal proteins. Consistent with previous studies on ribosomal protein mRNAs, the amounts of mRNA complementary to three of these cloned genes are controlled by the RNA2 locus. Although two of the five clones contain more than one yeast gene, none contain more than one identifiable ribosomal protein gene. Thus there is no evidence for "tight" linkage of yeast ribosomal protein genes. Two of the cloned ribosomal protein genes are single-copy genes, whereas two other cloned sequences contain two different copies of the same ribosomal protein gene. The fifth plasmid contains sequences which are repeated in the yeast genome, but it is not known whether any or all of the ribosomal protein gene on this clone contains repetitive DNA.  相似文献   

6.
7.
8.
An endonuclease cleaving depurinated and alkylated double-stranded DNA has been purified 500-fold from Saccharomyces cerevisiae, strain MB 1052. The enzyme has an Mr of 31 000 +/- 2000, a sedimentation value of 3.2S and a diffusion coefficient of 9.5 X 10-7 cm2/s. The enzyme was active only at apurinic/apyridiminic sites, regardless of whether they were produced by heating the DNA at acidic pH or by alkylation with the ultimate carcinogen methyl methanesulphonate. Native DNA was not acted upon. U.v.-irradiated DNA and DNA treated with the ultimate carcinogen N-acetoxy-2-acetylaminofluorene were cleaved to an extent related to the extent of apurinic/apyridiminic sites. Enzymic activity was not dependent upon Mg2+, but was stimulated approx. 3-fold by 4mM-Mg2+. The enzyme did not bind to DEAE-cellulose or CM-cellulose at KCl concentrations greater than 160 mM. The endonuclease was obtained free of exonuclease and 3-methyladenine-DNA glycosylase activity in five chromatographic steps.  相似文献   

9.
Summary The lysA gene of Escherichia coli has been cloned from a transducing phage on various plasmids, present in different copy numbers in bacterial cells. Synthesis of the product of this gene, diaminopimelate (DAP)-decarboxylase, and its regulation have been studied. Expression does not follow a simple gene dosage effect, maximal expression already being obtained with a six-copy plasmid. This result suggests that either a positive or an autogenous regulatory mechanism is involved. We also used one of the hybrid plasmids to look for expression of the bacterial lysA gene in Saccharomyces cerevisiae. The results indicate that the product of the E. coli gene is not actively translated in yeast.  相似文献   

10.
D Brutlag  K Fry  T Nelson  P Hung 《Cell》1977,10(3):509-519
Hybrid plasmid molecules containing tandemly repeated Drosophila satellite DNA were constructed using a modification of the (dA)-(dT) homopolymer procedure of Lobban and Kaiser (1973). Recombinant plasmids recovered after transformation of recA bacteria contained 10% of the amount of satellite DNA present in the transforming molecules. The cloned plasmids were not homogenous in size. Recombinant plasmids isolated from a single colony contained populations of circular molecules which varied both in the length of the satellite region and in the poly(dA)-(dt) regions linking satellite and vector. While subcloning reduced the heterogeneity of these plasmid populations, continued cell growth caused further variations in the size of the repeated regions. Two different simple sequence satellites of Drosophila melanogaster (1.672 and 1.705 g/cm3) were unstable in both recA and recBC hosts and in both pSC101 and pCR1 vectors. We propose that this recA-independent instability of tandemly repeated sequences is due to unequal intramolecular recombination events in replicating DNA molecules, a mechanism analogous to sister chromatid exchange in eucaryotes.  相似文献   

11.
A survey of restriction endonucleases having different cleavage specificities has identified 10 that do not cut wild-type bacteriophage T7 DNA, 11 that cut at six or fewer sites, four that cut at 18 to 45 sites, and 12 that cut at more than 50 sites. All the cleavage sites for the 13 enzymes that cut at 26 or fewer sites have been mapped. Cleavage sites for each of the 10 enzymes that do not cut T7 DNA would be expected to occur an average of 9 to 10 times in a random nucleotide sequence the length of T7 DNA. A possible explanation for the lack of any cleavage sites for these enzymes might be that T7 encounters enzymes having these specificities in natural hosts, and that the sites have been eliminated from T7 DNA by natural selection. Five restriction endonucleases were found to cut within the terminal repetition of T7 DNA; one of these, KpnI, cuts at only three additional sites in the T7 DNA molecule. The length of the terminal repetition was estimated by two independent means to be approximately 155 to 160 base-pairs.  相似文献   

12.
In Saccharomyces cerevisiae strain 6-1G-P188 about 10 per cent of rRNA genes exist as extrachromosomal copies of rDNA repeating units. These extrachromosomal copies can be isolated as covalently closed molecules with lengths around 3mu. We have constructed a set of hybrid plasmids containing the bacterial vector pBR325, the LEU2 gene of yeast encoding beta-isopropylmalatedehydrogenase and various EcoRI restriction fragments of the 3mu DNA. We have tested the ability of our hybrid plasmids to transform LEU2 strain DC5 to leucine prototrophy. One of the plasmids Rcp21/11 transforms DC5 at the frequency comparable with that obtained with YEp13, containing the 2mu DNA replication origin. The 2400 bp EcoRI-B fragment of the 3mu DNA in Rcp21/11 carries a gene for 5S rRNA and two spacers. Our results on transformation experiments allow un to suggest that this EcoRI fragment also carries the 3mu DNA replication origin. Yeast transformants containing this plasmid are highly unstable but during the prolonged growth in selective conditions the stabilization of the LEU+ phenotype is observed being most likely a result of integration of Rcp21/11 into the yeast chromosome.  相似文献   

13.
Linear plasmids were constructed by adding telomeres prepared from Tetrahymena pyriformis rDNA to a circular hybrid Escherichia coli-yeast vector and transforming Saccharomyces cerevisiae. The parental vector contained the entire 2 mu yeast circle and the LEU gene from S. cerevisiae. Three transformed clones were shown to contain linear plasmids which were characterized by restriction analysis and shown to be rearranged versions of the desired linear plasmids. The plasmids obtained were imperfect palindromes: part of the parental vector was present in duplicated form, part as unique sequences and part was absent. The sequences that had been lost included a large portion of the 2 mu circle. The telomeres were approximately 450 bp longer than those of T. pyriformis. DNA prepared from transformed S. cerevisiae clones was used to transform Schizosaccharomyces pombe. The transformed S. pombe clones contained linear plasmids identical in structure to their linear parents in S. cerevisiae. No structural re-arrangements or integration into S. pombe was observed. Little or no telomere growth had occurred after transfer from S. cerevisiae to S. pombe. A model is proposed to explain the genesis of the plasmids.  相似文献   

14.
Protoplasts of Saccharomyces cerevisiae were mixed with linear DNA plasmids, pGKl1 and pGKl2, isolated from a Kluyveromyces lactis killer strain and treated with polyethylene glycol. Out of 2,000 colonies regenerated on a nonselective medium, two killer transformants were obtained. The pGKl plasmids and the killer character were stably maintained in one (Pdh-1) of them. Another transformant, Pdl-1, was a weak killer, and the subclones consisted of a mixture of weak and nonkiller cells. The weak killers were characterized by the presence of pGKl1 in a decreased amount, and nonkillers were characterized by the absence of pGKl1. The occurrence of two new plasmids which migrated faster than pGKl1 in an agarose gel was observed in Pdl-1 and its subclones, whether weak or nonkillers. Staining with 4',6-diamidino-2-phenylindole revealed that the pGKl plasmids exist in the cytosol of transformant cells with numerous copy numbers.  相似文献   

15.
16.
17.
The restriction endonuclease map of the 25 S and 18 S ribosomal RNA genes of a higher plant is presented. Soybean (Glycine max) rDNA was enriched by preparative buoyant density centrifugation in CsCl-actinomycin D gradients. The buoyant density of the rDNA was determined to be 1.6988 g cm–3 by analytical centrifugation in CsCl. Saturation hybridization showed that 0.1% of the total DNA contains 25 S and 18 S rRNA coding sequences. This is equivalent to 800 rRNA genes per haploid genome (DNA content: 1.29 pg) or 3200 for the tetraploid genome. Restriction endonuclease mapping was performed with Bam H I, Hind III, Eco R I, and BstI. The repeating unit of the soybean ribosomal DNA has a molecular weight of 5.9·106 or approximately 9,000 kb. The 25 S and 18 S rRNA coding sequences were localized within the restriction map of the repeating unit by specific hybridization with either [125I]25 S or [125I]18 S rRNA. It was demonstrated that there is no heterogeneity even in the spacer region of the soybean rDNA.  相似文献   

18.
19.
Escherichia coli endonuclease IV and its Saccharomyces cerevisiae homologue Apn1, two DNA repair enzymes for free radical damages, were previously shown to be inactivated by metal-chelating agents. In the present study, atomic absorption spectrometry of endonuclease IV revealed the presence of 2.4 zinc and 0.7 manganese atoms, whereas Apn1 contained 3.3 zinc atoms and no significant manganese. EDTA-inactivated endonuclease IV retained 0.7 zinc atom but little detectable manganese. ZnCl2 reactivated 1,10-phenanthroline-treated Apn1, but was ineffective with endonuclease IV treated with either 1,10-phenanthroline or EDTA. In contrast, enzymatic activity was restored to both enzymes after EDTA treatment by incubation with CoCl2 and to a lesser extent by MnCl2. Endonuclease IV, reactivated with CoCl2 or MnCl2, regained all of the activities characteristic of the native enzyme. MnCl2 was as effective as CoCl2 at restoring activity to the 1,10-phenanthroline-treated enzymes. The results indicate that intrinsic metals play critical roles in both endonuclease IV and Apn1 and that manganese may perform a special function in endonuclease IV. Possible mechanistic roles for the metals in these DNA repair enzymes are discussed.  相似文献   

20.
Summary The action of Escherichia coli restriction endonuclease R1 (EcoR1) on DNA isolated from Saccharomyces cerevisiae (strain MAR-33) generates three predominent homogenously sized DNA fragments (species of 1.8, 2.2 and 2.5 kilo nucleotide base pairs (KB). Many DNA species of molecular weight greater than 2 million daltons can be recognized upon incomplete EcoR1 digestion of yeast DNA. Four additional DNA species ranging from 0.3–0.9 KB can be identified as the second major class of EcoR1-yeast DNA products.Hybridization with radioactive ribosomal RNA (rRNA) and competition with nonradioactive rRNA show that of the three predominent EcoR1-yeast DNA species, the 2.5 KB species hybridizes only with the 25S rRNA while the lighter 1.8 KB species hybridizes with the 18S rRNA. The intermediate DNA species of 2.2 KB hybridizes to a small extent with the 25S rRNA and could be a result of the presence of the 2.5 KB DNA species. The mass proportions and hybridization values of these 3 DNA species account for about 60% of the total ribosomal DNA (rDNA).The 5EcoR1-yeast DNA species of less than 0.9 KB (4 major and 1 minor species) hybridize to varying degrees with the 2 rRNA and can be grouped in two classes. In one class there are 3 DNA species that hybridize exclusively with the 18S rRNA. In the second class there are 2 DNA species that besides hybridizing predominently with the 25S rRNA also hybridize with the 18S rRNA. The 7 EcoR1-yeast DNA species (excluding the 2.2 KB DNA species) that hybridize with the two rRNA account for nearly a 5 million dalton DNA segment, which is very close to the anticipated gene size of rRNA precursor molecule. If the 2.2 KB DNA species is a part of the rDNA that is not transcribed or 5 sRNA then the cistron encoding the rRNA in S. cerevisiae has at least 8 EcoR1 recognition sites resulting in 8 DNA fragments upon digestion with the EcoR1. Consideration is given to the relationship of the rRNA species generated by EcoR1 digestion and the chromosomes containing ribosomal cistrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号