首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
. Gametophytic self-incompatibility (GSI) typically "breaks down" due to polyploidy in many Solanaceous species, resulting in self-compatible (SC) tetraploid individuals. However, sour cherry (Prunus cerasus L.), a tetraploid species resulting from hybridization of the diploid sweet cherry (P. avium L.) and the tetraploid ground cherry (P. fruticosa Pall.), is an exception, consisting of both self-incompatible (SI) and SC individuals. Since sweet cherry exhibits GSI with 13 S-ribonucleases (S-RNases) identified as the stylar S-locus product, the objectives were to compare sweet and sour cherry S-allele function, S-RNase sequences and linkage map location as initial steps towards understanding the genetic basis of SI and SC in sour cherry. S-RNases from two sour cherry cultivars that were the parents of a linkage mapping population were cloned and sequenced. The sequences of two S-RNases were identical to those of sweet cherry S-RNases, whereas three other S-RNases had unique sequences. One of the S-RNases mapped to the Prunus linkage group 6, similar to its location in sweet cherry and almond, whereas two other S-RNases were linked to each other but were unlinked to any other markers. Interspecific crosses between sweet and sour cherry demonstrated that GSI exists in sour cherry and that the recognition of common S-alleles has been maintained in spite of polyploidization. It is hypothesized that self-compatibility in sour cherry is caused by the existence of non-functional S-RNases and pollen S-genes that may have arisen from natural mutations.  相似文献   

3.
4.
Summary Callus protoplasts of sour cherry clone CAB4D entered sustained division in Murashige and Skoog's (1962) medium with 1-naphthaleneacetic acid, 6-beneylaminopurine and zeatin. Further to callusing, organogenesis was induced from the protoplastderived callus, in a basal regeneration medium with these same growth regulators at 0.01 mg/l, 2,0 mg/l and 0.05 mg/l, respectively. The regeneration pathway, from such callus, could be altered by adding different organic compounds to this medium. Casein hydrolysate, added alone, promoted rhizogenesis, with shoot buds regenerated from the protoplast-derived roots, while in a basal regeneration medium with casein hydrolysate and a group B vitamin mixture direct caulogenesis occurred.Abbreviations BAP 6-benzylaminopurine - BR basal regeneration medium - CEH casein enzymatic hydrolysate - FPE final plating efficiency - fwt fresh weight - IPE initial plating efficiency - MES 2-N-morpholinoethane sulfonic acid - MPE intermediate plating efficiency - MS Murashige and Skoog (1962) - NAA 1-naphthaleneacetic acid  相似文献   

5.
Tetraploid sour cherry (Prunus cerasus L.) exhibits gametophytic self-incompatibility (GSI) whereby the specificity of self-pollen rejection is controlled by alleles of the stylar and pollen specificity genes, S-RNase and SFB (S haplotype-specific F-box protein gene), respectively. As sour cherry selections can be either self-compatible (SC) or self-incompatible (SI), polyploidy per se does not result in SC. Instead the genotype-dependent loss of SI in sour cherry is due to the accumulation of non-functional S-haplotypes. The presence of two or more non-functional S-haplotypes within sour cherry 2x pollen renders that pollen SC. Two new S-haplotypes from sour cherry, S(33) and S(34), that are presumed to be contributed by the P. fruticosa species parent, the complete S-RNase and SFB sequences of a third S-haplotype, S(35), plus the presence of two previously identified sweet cherry S-haplotypes, S(14) and S(16) are described here. Genetic segregation data demonstrated that the S(16)-, S(33)-, S(34)-, and S(35)-haplotypes present in sour cherry are fully functional. This result is consistent with our previous finding that 'hetero-allelic' pollen is incompatible in sour cherry. Phylogenetic analyses of the SFB and S-RNase sequences from available Prunus species reveal that the relationships among S-haplotypes show no correspondence to known organismal relationships at any taxonomic level within Prunus, indicating that polymorphisms at the S-locus have been maintained throughout the evolution of the genus. Furthermore, the phylogenetic relationships among SFB sequences are generally incongruent with those among S-RNase sequences for the same S-haplotypes. Hypotheses compatible with these results are discussed.  相似文献   

6.
The effects of kernel extract obtained from sour cherry (Prunus cerasus) seed on the postischemic cardiac recovery were studied in isolated working rat hearts. Rats were treated with various daily doses of the extract for 14 days, and hearts were then isolated and subjected to 30 min of global ischemia followed by 120 min of reperfusion. The incidence of ventricular fibrillation (VF) and tachycardia (VT) fell from their control values of 92% and 100% to 50% (not significant) and 58% (not significant), 17% (P<0.05), and 25% (P<0.05) with the doses of 10 mg/kg and 30 mg/kg of the extract, respectively. Lower concentrations of the extract (1 and 5 mg/kg) failed to significantly reduce the incidence of VF and VT during reperfusion. Sour cherry seed kernel extract (10 and 30 mg/kg) significantly improved the postischemic recovery of cardiac function (coronary flow, aortic flow, and left ventricular developed pressure) during reperfusion. We have also demonstrated that the extract-induced protection in cardiac function significantly reflected in a reduction of infarct size. Immunohistochemistry indicates that a reduction in caspase-3 activity and apoptotic cells by the extract, beside other potential action mechanisms of proanthocyanidin, trans-resveratrol, and flavonoid components of the extract, could be responsible for the cardioprotection in ischemic-reperfused myocardium.  相似文献   

7.
《Plant science》1988,56(1):75-79
Mesophyll protoplasts, of sour cherry (Prunus cerasus), clones CAB 4D, CAB 5H and CAB 11E, gave differential cultural responses. Protoplasts in media based on Murashige and Skoog (MS) salts, supplemented with 9% (w/v) mannitol plus growth regulators underwent cell wall regeneration, cell colony and callus formation. Zeatin (Z) was needed in order to induce cell division for all three sour cherry clones. The protoplast-derived calli, of clones CAB 4D and CAB 5H, underwent rhizogenesis as an intermediate step towards shoot bud differentiation. Clone CAB 5H also gave direct shoot bud regeneration from the protoplast callus.  相似文献   

8.
Prunus avium L. (diploid, AA, 2n=2x=16), Prunus cerasus L. (allotetraploid, AAFF, 2n=4x=32) species, and their hybrid Prunus x gondouinii Rehd., constitute the most widely cultivated cherry tree species. P. cerasus is supposed to be an hybrid species produced by the union of unreduced P. avium gametes and normal P. fruticosa gametes. A continuum of morphological traits between these three species makes their assignation difficult. The aim of this paper is to study the genetic relationships between tetraploid and diploid cherry species. In all, 114 genotypes belonging to these species were analyzed using 75 AFLP markers. The coordinates of these genotypes on the first axis of a correspondence analysis allowed us to clearly distinguish each species, to identify misclassifications and to assign unknown genotypes to one species. We showed that there are specific alleles in P. cerasus, which are not present in the A genome of P. avium and which probably come from the F genome of P. cerasus. The frequencies of each marker in the A and the F genomes were estimated in order to identify A and F specific markers. We discuss the utility of these specific markers for finding the origin of the A and F genomes in the allopolyploid species.  相似文献   

9.
The glycoside hydrolase activity of Saccharomyces cerevisiae and Brettanomyces custersii was examined on sour cherry (Prunus cerasus L.) glycosides with bound volatile compounds. Refermentations by the beta-glucosidase-negative S. cerevisiae strains LD25 and LD40 of sour cherry juice-supplemented beer demonstrated only a moderate increase of volatiles. In contrast, the beta-glucosidase-positive B. custersii strain LD72 showed a more pronounced activity towards glycosides with aliphatic alcohols, aromatic compounds and terpenoid alcohols. Important contributors to sour cherry aroma such as benzaldehyde, linalool and eugenol were released during refermentation as shown by analytical tools. A gradually increasing release was observed during refermentations by B. custersii when whole sour cherries, sour cherry pulp or juice were supplemented in the beer. Refermentations with whole sour cherries and with sour cherry stones demonstrated an increased formation of benzyl compounds. Thus, amygdalin was partially hydrolysed, and a large part of the benzaldehyde formed was mainly reduced to benzyl alcohol and some further esterified to benzyl acetate. These findings demonstrate the importance and interesting role of certain Brettanomyces species in the production of fruit lambic beers such as 'Kriek'.  相似文献   

10.
J. Lin  W. J. Uwate  V. Stallman 《Planta》1977,135(2):183-190
The pollen tube of Prunus avium (cherry) consists of a growth zone of vesicles at the tip and an assemblage of organelles typical of an actively metabolizing cell. Electron opaque globules are closely associated with the plasma membrane and fibrillar cell wall layer at the tip. Acid phosphatase (EC 3.1.3.2) activity is localized in the membranes of 120 nm vesicles and ER system, the lumen of 50 nm vesicles, the plasma membrane and the tube nucleus.  相似文献   

11.
Prevailing ambient temperature during the reproductive phase is one of several important factors for seed and fruit set in different plant species, and its consequences on reproductive success may increase with global warming. The effect of temperature on pollen performance was evaluated in sweet cherry (Prunus avium L.), comparing as pollen donors two cultivars that differ in their adaptation to temperature. 'Sunburst' is a cultivar that originated in Canada with a pedigree of cultivars from Northern Europe, while 'Cristobalina' is a cultivar native to southeast Spain, adapted to warmer conditions. Temperature effects were tested either in controlled-temperature chambers or in the field in a plastic cage. In both genotypes, an increase in temperature reduced pollen germination, but accelerated pollen tube growth. However, a different genotypic response, which reflected the overall adaptation of the pollen donor, was obtained for pollen tube dynamics, expressed as the census of the microgametophyte population that successfully reached the base of the style. While both cultivars performed similarly at 20°C, the microgametophyte population was reduced at 30°C for Sunburst and at 10°C for Cristobalina. These results indicate a differential genotypic response to temperature during the reproductive phase, which could be important in terms of the time needed for a plant species to adapt to rapid temperature changes.  相似文献   

12.
13.
The DNA from various human tumors and tumor cell lines was screened for the presence of mutated ras oncogenes with synthetic oligonucleotide probes, as well as with the NIH/3T3 cell transfection assay. Among the various mutations found we discovered two novel Ki-ras mutations in codon 12: gly to ala and gly to ser. A gastric carcinoma was found to possess a single mutated Ki-ras allele (gly-12 to ser), as well as a 30-50 fold amplified normal allele. This implies that two activating steps must have occurred in this malignancy.  相似文献   

14.
Kato S  Mukai Y 《Heredity》2004,92(3):249-256
In the Rosaceae family, which includes Prunus, gametophytic self-incompatibility (GSI) is controlled by a single multiallelic locus (S-locus), and the S-locus product expressed in the pistils is a glycoprotein with ribonuclease activity (S-RNase). Two populations of flowering cherry (Prunus lannesiana var. speciosa), located on Hachijo Island in Japan's Izu Islands, were sampled, and S-allele diversity was surveyed based on the sequence polymorphism of S-RNase. A total of seven S-alleles were cloned and sequenced. The S-RNases of flowering cherry showed high homology to those of Prunus cultivars (P. avium and P. dulcis). In the phylogenetic tree, the S-RNases of flowering cherry and other Prunus cultivars formed a distinct group, but they did not form species-specific subgroups. The nucleotide substitution pattern in S-RNases of flowering cherry showed no excess of nonsynonymous substitutions relative to synonymous substitutions. However, the S-RNases of flowering cherry had a higher Ka/Ks ratio than those of other Prunus cultivars, and a subtle heterogeneity in the nucleotide substitution rates was observed among the Prunus species. The S-genotype of each individual was determined by Southern blotting of restriction enzyme-digested genomic DNA, using cDNA for S-RNase as a probe. A total of 22 S-alleles were identified. All individuals examined were heterozygous, as expected under GSI. The allele frequencies were, contrary to the expectation under GSI, significantly unequal. The two populations studied showed a high degree of overlap, with 18 shared alleles. However, the allele frequencies differed considerably between the two populations.  相似文献   

15.
Candida albicans is a diploid organism that exhibits high levels of heterozygosity. Although the precise manner by which this heterozygosity provides advantage for the commensal/pathogenic life styles of C. albicans is not known, heterozygous markers are themselves useful for studying genomic rearrangements, which occur frequently in C. albicans. Treatment of CAI-4 with UV light yielded histidine auxotrophs which could be complemented by HIS4, suggesting that strain CAI-4 is heterozygous for HIS4. These auxotrophs appeared to have undergone mitotic recombination and/or chromosome loss. As expected from a heterozygote, disruption of the functional allele of HIS4 resulted in a his4::hisG-URA3-hisG strain that is auxotrophic for histidine. Sequencing of random clones of the HIS4 ORF from CAI-4 and its precursor SC5314 revealed the presence of 11 SNPs, seven synonymous and four non-synonymous. Site-directed mutagenesis indicates that only one of those SNPs, T929G (Gly310Val), is responsible for the non-functionality of the encoded enzyme. HIS4 analysis of five commonly used laboratory strains is reported. This study provides a new, easily measured nutritional marker that can be used in future genetic studies in C. albicans.  相似文献   

16.
在蔷薇科、茄科和玄参科配子体自交不亲和中,编码花柱的S RNase控制花柱的自交不亲和性.在前两科植物中,自交不亲和(S)位点定位于着丝粒的附近,但在玄参科植物金鱼草(Antirrhinum)中自交不亲和位点至今未知.为了确定它在染色体上的位置和基因组结构,以基因型S2S5金鱼草根尖为材料,进行染色体的制备观察,利用地高辛标记的S2 RNase和含有其全长的BAC克隆(S2 BAC)为探针进行荧光染色体原位杂交(FISH),发现S2RNase杂交信号位于染色体的着丝粒附近,而S2 BAC的杂交信号位于每条染色体的着丝粒的周边区,呈对称的4个,表明金鱼草S位点位于着丝粒的周边区.对S2BAC预测基因的分析表明,发现一个金鱼草新的反转座子(RIS1).结果显示,金鱼草S位点位于染色体着丝粒的周边区,富含转座子和反转座子,和其他两类配子体自交不亲和的位置类似,预示它们的共同起源和具有抑制重组的功能.  相似文献   

17.
 Cytoplasmic male sterility (CMS) is the maternally inherited inability to produce functional pollen. The Rf3 allele of the nuclear gene rf3 gametophytically restores male fertility to maize plants with the S-type of CMS. The rf3 locus is on the long arm of maize chromosome two (2L). Using 2L RFLPs and three-point mapping analysis we showed that the rf3 locus is located an estimated 4.3 cM distal to the whp locus and 6.4 cM proximal to the bnl17.14 locus. This information was used in combination with RFLPs on two additional maize chromosomes to show that Rf3/rf3 CMS-S plants may aberrantly transmit the nonrestoring allele, rf3, through the male gametophyte. Received: 30 September 1996/Accepted: 21 March 1997  相似文献   

18.
在蔷薇科,茄科和玄参科配子体自交不亲和中,编码花柱的SRNase控制花柱的自交不亲和性,在前两科植物中,自交不亲和(S)位点定位于着丝粒的附近,但在玄参科植物金鱼草(Antirrhinum)中自交不亲和位点至今未知,为了确定它在染色体上的位置和基因组结构,以基因型S2S5金鱼草根尖为材料,进行染色体的制备观察,利用地高辛标记的S2RNase和含有其全长的BAC克隆(S2BAC)为探针进行荧光染色体原位杂交(FISH),发现S2RNase杂交信号位于染色体的着丝粒附近,而S2BAC的杂交信号位于每条染色体的着丝粒的周边区,呈对称的4个,表明金鱼草S位点位于着丝粒的周边区,对S2BAC预测基因的分析表明,发现一个金鱼草新的反转座子(RIS1)。结果显示,金鱼草S位点位于染色体着丝粒的周边区,富含转座子和反转座子,和其他两类配子体自交不亲和的位置类似,预示它们的共同起源和具有抑制重组的功能。  相似文献   

19.
Striking increases in fruit size distinguish cultivated descendants from small-fruited wild progenitors for fleshy fruited species such as Solanum lycopersicum (tomato) and Prunus spp. (peach, cherry, plum, and apricot). The first fruit weight gene identified as a result of domestication and selection was the tomato FW2.2 gene. Members of the FW2.2 gene family in corn (Zea mays) have been named CNR (Cell Number Regulator) and two of them exert their effect on organ size by modulating cell number. Due to the critical roles of FW2.2/CNR genes in regulating cell number and organ size, this family provides an excellent source of candidates for fruit size genes in other domesticated species, such as those found in the Prunus genus. A total of 23 FW2.2/CNR family members were identified in the peach genome, spanning the eight Prunus chromosomes. Two of these CNRs were located within confidence intervals of major quantitative trait loci (QTL) previously discovered on linkage groups 2 and 6 in sweet cherry (Prunus avium), named PavCNR12 and PavCNR20, respectively. An analysis of haplotype, sequence, segregation and association with fruit size strongly supports a role of PavCNR12 in the sweet cherry linkage group 2 fruit size QTL, and this QTL is also likely present in sour cherry (P. cerasus). The finding that the increase in fleshy fruit size in both tomato and cherry associated with domestication may be due to changes in members of a common ancestral gene family supports the notion that similar phenotypic changes exhibited by independently domesticated taxa may have a common genetic basis.  相似文献   

20.
Tetraploid sour cherry (Prunus cerasus) has an S-RNase-based gametophytic self-incompatibility (GSI) system; however, individuals can be either self-incompatible (SI) or self-compatible (SC). Unlike the situation in the Solanaceae, where self-compatibility accompanying polyploidization is often due to the compatibility of heteroallelic pollen, the genotype-dependent loss of SI in sour cherry is due to the compatibility of pollen containing two nonfunctional S haplotypes. Sour cherry individuals with the S4S6S36aS36b genotype are predicted to be SC, as only pollen containing both nonfunctional S36a and S36b haplotypes would be SC. However, we previously found that individuals of this genotype were SI. Here we describe four nonfunctional S36 variants. Our molecular analyses identified a mutation that would confer loss of stylar S function for one of the variants, and two alterations that might cause loss of pollen S function for all four variants. Genetic crosses showed that individuals possessing two nonfunctional S36 haplotypes and two functional S haplotypes have reduced self-fertilization due to a very low frequency of transmission of the one pollen type that would be SC. Our finding that the underlying mechanism limiting successful transmission of genetically compatible gametes does not involve GSI is consistent with our previous genetic model for Prunus in which heteroallelic pollen is incompatible. This provides a unique case in which breakdown of SI does not occur despite the potential to generate SC pollen genotypes.GAMETOPHYTIC self-incompatibility (GSI) is a widespread mechanism in flowering plants that prevents self-fertilization and promotes out-crossing (De Nettancourt 2001). In GSI plants, pollen tube growth is arrested if there is a match between the genes at the S-locus that control pollen and stylar specificity. The gene controlling stylar specificity in the Solanaceae, Rosaceae, and Plantaginaceae is known to encode a ribonuclease (S-RNase) (for a review see McClure 2009), while the gene controlling pollen specificity encodes an F-box protein [S haplotype-specific F-box protein (SFB) or S-locus F-box protein (SLF)] (Lai et al. 2002; Entani et al. 2003; Ushijima et al. 2003; Sijacic et al. 2004). As these two specificity genes are tightly linked and recombination between these two genes has never been observed (Ikeda et al. 2005), these two S-locus specificity genes are collectively termed the S haplotype.Characterization of the S haplotype is most advanced in Prunus (Rosaceae) due to the small physical size of the S haplotype region and the close proximity of the stylar S (S-RNase) and pollen S (SFB) genes (Entani et al. 2003; Ushijima et al. 2003; Yamane et al. 2003b; Ikeda et al. 2005). Within Prunus, sweet cherry (Prunus avium) and sour cherry (P. cerasus) represent a model diploid–tetraploid series that has been used to investigate the effects of polyploidy on GSI. Tetraploid sour cherry is considered to have arisen through hybridization between sweet cherry and tetraploid ground cherry (P. fruticosa) (Olden and Nybom 1968). Like sweet cherry, sour cherry exhibits an S-RNase-based GSI system (Yamane et al. 2001; Hauck et al. 2002; Tobutt et al. 2004) and interspecific crossing studies have demonstrated that sour cherry shares eight sweet cherry S haplotypes: S1, S4, S6, S9, S12, S13, S14, and S16 (Bošković et al. 2006; Hauck et al. 2006a,b; Tsukamoto et al. 2006, 2008). However, in contrast to sweet cherry, natural sour cherry selections include both self-incompatible (SI) and self-compatible (SC) types. A genetic model demonstrating that the genotype-dependent loss of SI in sour cherry is due to the accumulation of a minimum of two nonfunctional S haploytpes within a single individual was developed and validated (Hauck et al. 2006b). These nonfunctional S haplotypes were characterized as either pollen-part mutants or stylar-part mutants, depending on whether the pollen S or stylar S specificity was disrupted. In Prunus, pollen-part and stylar-part mutants are denoted by a prime symbol “′” or a subscribed “m,” respectively, following the S haplotype number (Tsukamoto et al. 2006). Molecular characterizations of five of the nonfunctional S haplotypes from sour cherry characterized to date support the genetic results because mutations were identified that affected the S-RNase and/or SFB. These changes in coding or regulatory regions included mutations within the S-RNase and/or SFB causing premature stop codons, transposable element insertions within SFB and upstream of the S-RNase, and a 23-bp deletion in a conserved region of the S-RNase (Yamane et al. 2003a; Hauck et al. 2006a; Tsukamoto et al. 2006).According to the genetic model, termed the “one-allele-match model,” sour cherry pollen is rejected if one or both of the functional S haplotypes in the 2x pollen grain match an S haplotype in the style (Hauck et al. 2006b). Therefore, only pollen containing two nonfunctional S haplotypes would be SC; thus, a sour cherry genotype is SC if it has a minimum of two nonfunctional S haplotypes. We previously tested the one-allele-match model using 92 sour cherry selections from four progeny populations (Hauck et al. 2006b). For all the progeny except three, their S genotype correctly predicted whether they were SI or SC. The three progeny individuals that were the exception all had the same genotype: S4S6SaSd. These individuals were predicted to be SC as the Sa and Sd haplotypes were shown to be nonfunctional in genetic studies and therefore SaSd pollen should be SC. However, these progeny were classified as SI on the basis of observations of self-pollen tube growth in the styles. The Sa and Sd haplotypes were originally distinguished on the basis of different RFLP fragment sizes using an S-RNase probe; the HindIII fragment sizes for Sa and Sd differed by ∼200 bp, 6.4-kb and 6.2-kb, respectively (Yamane et al. 2001; Hauck et al. 2002). However, partial S-RNase and SFB sequences from the Sa and Sd haplotypes were identical (N. R. Hauck and A. F. Iezzoni, unpublished results), suggesting that Sa and Sd represented different mutations of the same S haplotype. Therefore, we hypothesized that the SI phenotype of the S4S6SaSd individuals resulted from complementary pistil S and pollen S mutations in the nonfunctional Sa and Sd haplotypes, thus behaving genetically as one functional S haplotype.We previously reported that heteroallelic sour cherry pollen containing two different functional pollen S haplotypes is incompatible (Hauck et al. 2006b). This finding is counter to the well-documented phenomenon in the Solanaceae where SC accompanying polyploidization is frequently due to the SC of heteroallelic pollen (Lewis 1943; Golz et al. 1999, 2001; Tsukamoto et al. 2005; Xue et al. 2009). Therefore, models explaining the molecular basis of self-recognition in Prunus and the Solanaceae must be consistent with these differing genetic expectations. Recently, Huang et al. (2008) reported competitive interaction in a SC selection of tetraploid P. pseudocerasus, raising the possibility that the SC mechanism between these two tetraploid Prunus species could be different. However, although the data in Huang et al. (2008) are consistent with heteroallelic pollen being SC, homoallelic pollen (e.g., S1S1, S5S5, or S7S7) was not shown to be successful in compatible crosses and unsuccessful in incompatible ones. Therefore, it is possible that the SC in P. pseudocerasus could be caused by mutations in other genes critical for the SI reaction. Because of the importance of these differing genetic expectations for understanding S-RNase-based GSI, we sought to investigate our previously identified exceptions to the one-allele-match model. Specifically, our objective was to test our prior hypothesis that the nonfunctional Sa and Sd haplotypes interact in a complementary manner and therefore behave together genetically as a single functional S haplotype. In this work, the Sa and Sd haplotypes were renamed S36a and S36b, respectively, following the order of previously published S haplotypes (Tsukamoto et al. 2008; Vaughan et al. 2008) for reasons explained in the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号