首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bromus inermis Leyss cell cultures treated with 75 micromolar abscisic acid (ABA) at both 23 and 3°C developed more freezing resistance than cells cultured at 3°C. Protein synthesis in cells induced to become freezing tolerant by ABA and low temperature was monitored by [14C]leucine incorporation. Protein synthesis continued at 3°C, but net cell growth was stopped. Most of the major proteins detected at 23°C were synthesized at 3°C. However, some proteins were synthesized only at low temperatures, whereas others were inhibited. ABA showed similar effects on protein synthesis at both 23 and 3°C. Comparative electrophoretic analysis of [14C]leucine labeled protein detected the synthesis of 19, 21 and 47 kilodalton proteins in less than 8 hours after exposure to exogenous ABA. Proteins in the 20 kilodalton range were also synthesized at 3°C. In addition, a 31 kilodalton protein band showed increased expression in freezing resistant ABA treated cultures after 36 hours growth at both 3 and 23°C. Quantitative analysis of [14C]leucine labeled polypeptides in two-dimensional gels confirmed the increased expression of the 31 kilodalton protein. Two-dimensional analysis also resolved a 72 kilodalton protein enriched in ABA treated cultures and identified three proteins (24.5, 47, and 48 kilodaltons) induced by low temperature growth.  相似文献   

2.
Cold Acclimation in Arabidopsis thaliana   总被引:27,自引:13,他引:14       下载免费PDF全文
The abilities of two races of Arabidopsis thaliana L. (Heyn), Landsberg erecta and Columbia, to cold harden were examined. Landsberg, grown at 22 to 24°C, increased in freezing tolerance from an initial 50% lethal temperature (LT50) of about −3°C to an LT50 of about −6°C after 24 hours at 4°C; LT50 values of −8 to −10°C were achieved after 8 to 9 days at 4°C. Similar increases in freezing tolerance were obtained with Columbia. In vitro translation of poly(A+) RNA isolated from control and cold-treated Columbia showed that low temperature induced changes in the population of translatable mRNAs. An mRNA encoding a polypeptide of about 160 kilodaltons (isoelectric point about 4.5) increased markedly after 12 to 24 h at 4°C, as did mRNAs encoding four polypeptides of about 47 kilodaltons (isoelectric points ranging from 5-5.5). Incubation of Columbia callus tissue at 4°C also resulted in increased levels of the mRNAs encoding the 160 kilodalton polypeptide and at least two of the 47 kilodalton polypeptides. In vivo labeling experiments using Columbia plants and callus tissue indicated that the 160 kilodalton polypeptide was synthesized in the cold and suggested that at least two of the 47 kilodalton polypeptides were produced. Other differences in polypeptide composition were also observed in the in vivo labeling experiments, some of which may be the result of posttranslational modifications of the 160 and 47 kilodalton polypeptides.  相似文献   

3.
Cellular and extracellular protein profiles from Bromus inermis Leyss. cv Manchar cell suspension cultures cold hardened by low temperature and abscisic acid (ABA) treatment were analyzed by one- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellular proteins (25, 165, 190, and 200 kilodaltons) increased by low temperature growth and cellular proteins (20, 25, 28, 30, 32, 37, 40, 45, 200 kilodaltons) increased by exogenous ABA treatment were identified. Low temperature treatment inhibited the synthesis of a 22 kilodalton protein and ABA treatment resulted in the synthesis of two extracellular proteins (17 and 21 kilodaltons). Low temperature and ABA-induced hardening conditions increased or induced a 25 and a 200 kilodalton protein. The 25 and a 30 kilodalton protein previously shown to be enriched by ABA-induced hardening conditions at both 3 and 23°C temperatures co-fractionated with the crude membrane fraction (30,000g sediment). The 200 kilodalton protein was detected in the 30,000g supernatant. Two-dimensional analysis of the crude membrane fraction resolved the 30 kilodalton protein band into a major polypeptide with an apparent isoelectric point of 6.85.  相似文献   

4.
Coleoptiles and roots of 3-day-old seedlings from five cereal species (Triticum aestivum L., T. durum Desf., Hordeum vulgare L., Secale cereale L., and Triticale) respond to heat shock at 40°C by synthesizing a new set of 13 strong bands (as revealed by one-dimensional sodium dodecyl sulfate gel electrophoresis) as well as some 20°C proteins. Heat shock proteins (HSPs) belong to three different size groups: high molecular mass HSPs in the 103 to 70 kilodalton range, intermediate molecular mass HSPs in the 62 to 32 kilodalton range, and low molecular mass HSPs about 17 to 16 kilodalton in size. At the beginning of the heat shock coleoptiles show a reduced ability to synthesize intermediate molecular mass HSPs but after 4 hours at 40°C they exhibit fully developed HSP patterns identical to that found in roots. Synthesis of early HSPs declines after 7 hours of treatment followed by the appearance of a new set of 12 protein bands (late HSPs) in the ranges 99 to 83, 69 to 35, and 15 to 14 kilodaltons. After 12 hours at 40°C, three other late HSPs of 89, 45, and 38 kilodalton are induced. The induction of late HSPs after 7 hours at 40°C appears to be associated with an enhancement of radioactive methionine incorporation into proteins.  相似文献   

5.
Effect of heat shock on the growth of cultured sugarcane cells (Saccharum officinarum L.) was measured. Heat shock (HS) treatment at 36 to 38°C (2 hours) induced the development of maximum thermotolerance to otherwise nonpermissive heat stress at 54°C (7 minutes). Optimum thermotolerance was observed 8 hours after heat shock. Development of thermotolerance was initiated by treatments as short as 30 minutes at 36°C. Temperatures below 36°C or above 40°C failed to induce maximum thermotolerance. In vivo labeling revealed that HS at 32 to 34°C induced several high molecular mass heat shock proteins (HSPs). A complex of 18 kilodalton HSPs required at least 36°C treatment for induction. The majority of the HSPs began to accumulate within 10 minutes, whereas the synthesis of low molecular mass peptides in the 18 kilodalton range became evident 30 minutes after initiation of HS. HS above 38°C resulted in progressively decreased HSP synthesis with inhibition first observed for HSPs larger than 50 kilodaltons. Analysis of two-dimensional gels revealed a complex pattern of label incorporation including the synthesis of four major HSPs in the 18 kilodalton range and continued synthesis of constitutive proteins during HS.  相似文献   

6.
Heat shock proteins in maize   总被引:27,自引:19,他引:8       下载免费PDF全文
Cooper P  Ho TH 《Plant physiology》1983,71(2):215-222
The pattern of protein synthesis in roots of 3-day-old maize seedlings (Zea mays L.) is rapidly and dramatically altered when the incubation temperature is raised from 25 to 40°C. One-dimensional sodium dodecyl sulfate gels reveal that although synthesis of the proteins observed at 25°C continues at 40°C, a new set of `heat shock proteins' (hsp) is induced within 20 minutes of the temperature transition. The hsp have molecular weights of 87, 85, 79, 78, 77, 72, 70, 27, 22, and 18 kilodaltons. The 10 hsp are visible on autoradiograms but not on stained gels, suggesting that the proteins do not accumulate to any great extent.

The induction of the hsp is transitory. With prolonged high temperature treatment, the synthesis of hsp continues for 4 hours in excised roots and for 8 hours in the roots of intact seedlings before declining sharply. Coincident to the decline in synthesis of the 10 hsp is the gradual increase in intensity of three new polypeptides having molecular weights of 62, 49.5, and 19 kilodaltons. These proteins begin to appear about the time that synthesis of the other 10 hsp becomes maximal.

Shifting the temperature back to 25°C also causes a decline in synthesis of hsp, but this decline occurs more rapidly than that seen during prolonged heat shock. A decrease in hsp synthesis becomes apparent 2 hours after the roots are returned to 25°C.

Shifting the temperature from 25 to 45°C results in a pattern of protein synthesis different from that observed after a shift to 40°C. Normal protein synthesis continues, except four proteins, which are produced in small amounts at lower temperatures, show greatly enhanced synthesis at 45°C. These proteins have apparent molecular weights of 83, 81, 68, and 65 kilodaltons. Also, the 10 hsp listed above are not synthesized. It is suggested that at least two distinct high-temperature responses are present in maize, which may reflect the metabolic changes generated at different elevated temperatures.

  相似文献   

7.
Exposure of leaf sections from 2-week-old seedlings of sorghum (Sorghum bicolor L.) (C4 plant), corn (Zea mays L.) (C4), peanut (Arachis hypogaea L.) (C3 plant), and soybean (Glycine max L.) (C3) to 40 or 45°C for up to 4 hours resulted in significant increases in the levels of 102 kilodalton (C4), 52 kilodalton (C3 and C4), and 15 kilodalton (C3 and C4) polypeptides. These proteins comigrated, respectively, with authentic phosphoenolpyruvate carboxylase (PEPC) and the large (RLSU) and small (RSSU) subunits of ribulose-1,5-bisphosphate carboxylase (Rubisco) during both one- and two-dimensional SDS-PAGE and reacted with antisera raised against these enzymes. After 4 hours at 50°C, levels of the polypeptides either remained relatively stable (PEPC, RLSU) or increased (RSSU) in sorghum and peanut (plants native to hot climates). In corn and soybean (plants native to temperate climates), levels of the proteins either fell sharply (corn) or showed strong evidence of incomplete processing and/or aggregation (soybean). In addition to changes in levels of the proteins, the activities of PEPC and Rubisco in extracts of leaves exposed to 50°C fell by 84% and 11% of their respective control values in sorghum and by 54% each in peanut. In corn and soybean, the activities of both enzymes were depressed at 40°C, with measured values at 50°C not exceeding 5% of those from the nonstressed controls.  相似文献   

8.
Bacteriophytochromes (BphPs) are light-sensing regulatory proteins encoded in photosynthetic and non-photosynthetic bacteria. This protein class incorporate bilin as their chromophore, with majority of them bearing a light- regulated His kinase or His kinase related module in the C-terminal. We studied the His kinase actives in the temperature range of 5°C to 40°C on two BphPs, Agp1 from Agrobacterium tumefaciens and Cph1 from cyanobacterium Synechocystis PCC 6803. As reported, the phosphorylation activities of the far red (FR) irradiated form of the holoprotein is stronger than that of the red (R) irradiated form in both phytochromes. We observed for the apoprotein and FR irradiated holoprotein of Agp1 an increase in the phosphorylation activities from 5°C to 25°C and a decrease from 25°C to 40°C. At 5°C the activities of the apoprotein were significantly lower than those of the FR irradiated holoprotein, which was opposite at 40°C. A similar temperature pattern was observed for Cph1, but the maximum of the apoprotein was at 20°C while the maximum of the FR irradiated holoprotein was at 10°C. At 40°C, prolonged R irradiation leads to an irreversible bleaching of Cph1, an effect which depends on the C-terminal His kinase module. A more prominent and reversible temperature effect on spectral properties of Agp1, mediated by the His kinase, has been reported before. His kinases in phytochromes could therefore share similar temperature characteristics. We also found that phytochrome B mutants of Arabidopsis have reduced hypocotyl growth at 37°C in darkness, suggesting that this phytochrome senses the temperature or mediates signal transduction of temperature effects.  相似文献   

9.
We have studied modifications in the pattern of proteins synthesized by tobacco (Nicotiana tabacum var Maryland) mesophyll protoplasts when they are transferred from 25°C to 40°C. The synthesis of one group of proteins is practically unaffected by the heat shock. On the other hand, the synthesis of most other 25°C proteins is greatly reduced, while specific heat-shock proteins appear: 17 stable, neutral, major proteins, which are synthesized throughout the culture period at the higher temperature and which correspond to those observed in other organisms, and two basic proteins with a short lifetime and which are synthesized only during the first 2 hours of heat shock. We suggest that these latter proteins are regulatory peptides which intervene in the inhibition of 25°C syntheses.  相似文献   

10.
Pima County, Ariz., is currently investigating the potential benefits of land application of sewage sludge. To assess risks associated with the presence of pathogenic enteric viruses present in the sludge, laboratory studies were conducted to measure the inactivation rate (k = log10 reduction per day) of poliovirus type 1 and bacteriophages MS2 and PRD-1 in two sludge-amended desert agricultural soils (Brazito Sandy Loam and Pima Clay Loam). Under constant moisture (approximately -0.05 × 105 Pa for both soils) and temperatures of 15, 27, and 40°C, the main factors controlling the inactivation of these viruses were soil temperature and texture. As the temperature increased from 15 to 40°C, the inactivation rate increased significantly for poliovirus and MS2, whereas, for PRD-1, a significant increase in the inactivation rate was observed only at 40°C. Clay loam soils afforded more protection to all three viruses than sandy soils. At 15°C, the inactivation rate for MS2 ranged from 0.366 to 0.394 log10 reduction per day in clay loam and sandy loam soils, respectively. At 27°C, this rate increased to 0.629 log10 reduction per day in clay loam soil and to 0.652 in sandy loam soil. A similar trend was observed for poliovirus at 15°C (k = 0.064 log10 reduction per day, clay loam; k = 0.095 log10 reduction per day, sandy loam) and 27°C (k = 0.133 log10 reduction per day, clay loam; k = 0.154 log10 reduction per day, sandy loam). Neither MS2 nor poliovirus was recovered after 24 h at 40°C. No reduction of PRD-1 was observed after 28 days at 15°C and after 16 days at 27°C. At 40°C, the inactivation rates were 0.208 log10 reduction per day in amended clay loam soil and 0.282 log10 reduction per day in sandy loam soil. Evaporation to less than 5% soil moisture completely inactivated all three viruses within 7 days at 15°C, within 3 days at 27°C, and within 2 days at 40°C regardless of soil type. This suggests that a combination of high soil temperature and rapid loss of soil moisture will significantly reduce risks caused by viruses in sludge.  相似文献   

11.
When soybean Glycine max var Wayne seedlings are shifted from a normal growth temperature of 28°C up to 40°C (heat shock or HS), there is a dramatic change in protein synthesis. A new set of proteins known as heat shock proteins (HSPs) is produced and normal protein synthesis is greatly reduced. A brief 10-minute exposure to 45°C followed by incubation at 28°C also results in the synthesis of HSPs. Prolonged incubation (e.g. 1-2 hours) at 45°C results in greatly impaired protein synthesis and seedling death. However, a pretreatment at 40°C or a brief (10-minute) pulse treatment at 45°C followed by a 28°C incubation provide protection (thermal tolerance) to a subsequent exposure at 45°C. Maximum thermoprotection is achieved by a 2-hour 40°C pretreatment or after 2 hours at 28°C with a prior 10-minute 45°C exposure. Arsenite treatment (50 micromolar for 3 hours) also induces the synthesis of HSP-like proteins, and also provides thermoprotection to a 45°C HS; thus, there is a strong positive correlation between the accumulation of HSPs and the acquisition of thermal tolerance under a range of conditions.

During 40°C HS, some HSPs become localized and stably associated with purified organelle fractions (e.g. nuclei, mitochondria, and ribosomes) while others do not. A chase at 28°C results in the gradual loss over a 4-hour period of the HSPs from the organelle fractions, but the HSPs remain selectively localized during a 40°C chase period. If the seedlings are subjected to a second HS after a 28°C chase, the HSPs rapidly (complete within 15 minute) relocalize in the organelle fractions. The relative amount of the HSPs which relocalize during a second HS increases with higher temperatures from 40°C to 45°C. Proteins induced by arsenite treatment are not selectively localized with organelle fractions at 28°C but become organelle-associated during a subsequent HS at 40°C.

  相似文献   

12.
Meloidogyne enterolobii and M. floridensis are virulent species that can overcome root-knot nematode resistance in economically important crops. Our objectives were to determine the effects of temperature on the infectivity of second-stage juveniles (J2) of these two species and determine differences in duration and thermal-time requirements (degree-days [DD]) to complete their developmental cycle. Florida isolates of M. enterolobii and M. floridensis were compared to M. incognita race 3. Tomato cv. BHN 589 seedlings following inoculation were placed in growth chambers set at constant temperatures of 25°C, and 30°C, and alternating temperatures of 30°C to 25°C (day–night). Root infection by the three nematode species was higher at 30°C than at 25°C, and intermediate at 30°C to 25°C, with 33%, 15%, and 24% infection rates, respectively. There was no difference, however, in the percentages of J2 that infected roots among species at each temperature. Developmental time from infective J2 to reproductive stage for the three species was shorter at 30°C than at 25°C, and 30°C to 25°C. The shortest time and DD to egg production for the three species were 13 days after inoculation (DAI) and 285.7 DD, respectively. During the experimental timeframe of 29 d, a single generation was completed at 30°C for all three species, whereas only M. floridensis completed a generation at 30°C to 25°C. The number of days and accumulated DD for completing the life cycle (from J2 to J2) were 23 d and 506.9 DD for M. enterolobii, and 25 d and 552.3 DD for M. floridensis and M. incognita, respectively. Exposure to lower (25°C) and intermediate temperatures (30°C to 25°C) decreased root penetration and slowed the developmental cycle of M. enterolobii and M. floridensis compared with 30°C.  相似文献   

13.
Differences in the photosynthetic performance between pairs of heat tolerant (HT) and heat sensitive (HS) accessions of tuber-bearing Solanum species were measured at 40 °C, after treating plants at 40/30 °C. After 1 to 9 days of heat treatment, both HT and HS accessions showed progressive inhibitory effects, primarily decreased rates of CO2 fixation, and loss of leaf chlorophyll. These effects were most pronounced in the HS accessions. Stomatal conductivity and internal CO2 concentrations were lower for both accessions at 40 °C especially for the HS accessions, suggesting that at ambient CO2 concentrations, stomatal conductance was limiting CO2 availability at the higher temperature. In the HT accessions, stomatal limitations were largely attributed to differences in vapor pressure deficit between 25° and 40 °C, while the HS accessions exhibited significant nonstomatal limitations. The young expanding leaves of the HS accession showed some HT characteristics, while the oldest leaves showed severe senescence symptoms after 9 days at 40/30 °C. The data suggest that differences in heat sensitivity between HT and HS accessions are the result of accelerated senescence, chlorophyll loss, reduced stomatal conductance, and inhibition of dark reactions at high temperature.  相似文献   

14.
The temperature dependence of the rate and magnitude of the reappearance of photosystem II (PSII) variable fluorescence following illumination has been used to determine plant temperature optima. The present study was designed to determine the effect of a plant's environmental history on the thermal dependency of the reappearance of PSII variable fluorescence. In addition, this study further evaluated the usefulness of this fluorescence technique in identifying plant temperature optima. Laboratory and greenhouse grown potato (Solanum tuberosum L. cv “Norgold M”) plants had a thermal kinetic window between 15 and 25°C. The minimum apparent Km of NADH hydroxypyruvate reductase for NADH occurred at 20°C. This temperature was also the temperature providing maximal reappearance of variable fluorescence. Soybean (Glycine max [L.] Merrill cv “Wayne”) plants had a thermal kinetic window between 15 and 30°C with a minimum apparent Km at 25°C. Maximal reappearance of variable fluorescence was seen between 20 and 30°C. To determine if increasing environmental temperatures increased the temperature optimum provided from the fluorescence response curves, potato and soybean leaves from irrigated and dryland field grown plants were evaluated. Although the absolute levels of PSII variable fluorescence declined with increasing thermal stress, the temperature optimum of the dryland plants did not increase with increased exposure to elevated temperatures. Because of variability in the daily period of high temperature stress in the field, studies were initiated with tobacco plants grown in controlled environment chambers. The reappearance of PSII variable fluorescence in tobacco (Nicotiana tabacum L. cv “Wisconsin 38”) leaves that had experienced continuous leaf temperatures of 35°C for 8 days had the same 20°C optima as leaves from plants grown at room temperature. The results of this study suggest that the temperature optimum for the reappearance of variable fluorescence following illumination is not altered by the plant's previous exposure to variable environmental temperatures. These findings support the usefulness of this procedure for the rapid identification of a plant's temperature optimum.  相似文献   

15.
Interaction of heat and salt shock in cultured tobacco cells   总被引:8,自引:2,他引:8       下载免费PDF全文
Cultured tobacco cells (Nicotiana tabacum L. var Wisconsin-38) developed tolerance to otherwise nonpermissive 54°C treatment when heat-shocked at 38°C (2 h) but not at 42°C. Heat-shocked cells (38°C) exhibited little normal growth when the 54°C stress came immediately after heat shock and normal growth when 54°C stress was administered 8 hours after heat shock. Heat shock extended the length of time that the cells tolerated 54°C. Tobacco cells developed tolerance to otherwise lethal 2% NaCl treatment when salt-shocked (1.2% NaCl for 3 hours). The time course for salt tolerance development was similar to that of thermotolerance. Heat-shocked cells (38°C) developed tolerance of nonpermissive salt stress 8 hours after heat shock. Alternatively, cells heat-shocked at 42°C exhibited immediate tolerance to lethal salt stress followed by a decline over 8 hours. Radioactive methionine incorporation studies demonstrated synthesis of heat shock proteins at 38°C. The apparent molecular weights range from 15 to 115 kilodaltons with a protein complex in the 15 to 20 kilodalton range. Synthesis of heat shock proteins appeared to persist at 42°C but with large decreases in incorporation into selected heat shock protein. During salt shock, the synthesis of normal control proteins was reduced and a group of salt shock proteins appeared 3 to 6 h after shock. Similarities between the physiology and salt shock proteins/heat shock proteins suggest that both forms of stress may share common elements.  相似文献   

16.
In the leaves of plants that are grown in the natural environment, the accumulation of mRNAs encoding the chlorophyll a/b binding proteins (CAB) follow a circadian rhythm. It is generally accepted that the day/night (sunset, light/dark) or night/day (sunrise, dark/light) transitions play an important role in the synchronization of the rhythm and the determination of the accumulation amplitude. As the results of the experiments presented in this paper indicate, temperature alterations also support the setting and the arrangement of the rhythm. Apparently, simulating “day/night” temperature alternations influences the tomato (Lycopersicon esculentum) plants to express a typical circadian oscillation pattern of cab mRNAs. This rhythm was sustained in the plants after long-term exposure to an alternating temperature regime. In constant conditions, e.g. continuous illumination at either 18°C or 24°C or in continuous darkness at 24°C, this diurnal fluctuation pattern with a period of about 24 hours remained present for at least 2 days.  相似文献   

17.
18.
Cotton fibers (Gossypium hirsutum L.) developing in vitro responded to cyclic temperature change similarly to those of field-grown plants under diumal temperature fluctuations. Absolute temperatures and rates of temperature change were similar under both conditions. In vitro fibers exhibited a “growth ring” for each time the temperature cycled to 22 or 15°C. Rings were rarely detected when the low point was 28°C. The rings seemed to correspond to alternating regions of high and low cellulose accumulation. Fibers developed in vitro under 34°C/22°C cycling developed similarly to constant 34°C controls, but 34°C/22°C and 34°C/15°C cycling caused delayed onset and prolonged periods of elongation and secondary wall thickening. Control fiber length and weight were finally achieved under 34°C/22°C cycling, but both parameters were reduced at the end of the experiment under 34°C/15°C cycling. Fibers developed under all conditions had equal bundle tensile strength. These results demonstrate that: (a) cool temperature effects on fiber development are at least partly fiber/ovule-specific events; they do not depend on whole-plant physiology; and (b) cultured ovules are valid models for research on the regulation of the field cool temperature response.  相似文献   

19.
The heat stress response was studied in Lactobacillus helveticus PR4 during propagation in cheese whey with a gradient of naturally decreasing temperature (55 to 20°C). Growth under a gradient of decreasing temperature was compared to growth at a constant temperature of 42°C. Proteinase, peptidase, and acidification activities of L. helveticus PR4 were found to be higher in cells harvested when 40°C was reached by a gradient of decreasing temperature than in cells grown at constant temperature of 42°C. When cells grown under a temperature gradient were harvested after an initial exposure of 35 min to 55°C followed by decreases in temperature to 40 (3 h), 30 (5 h 30 min), or 20°C (13 h 30 min) and were then compared with cells grown for the same time at a constant temperature of 42°C, a frequently transient induction of the levels of expression of 48 proteins was found by two-dimensional electrophoresis analysis. Expression of most of these proteins increased following cooling from 55 to 40°C (3 h). Sixteen of these proteins were subjected to N-terminal and matrix-assisted laser desorption ionization-time of flight mass spectrometry analyses. They were identified as stress proteins (e.g., DnaK and GroEL), glycolysis-related machinery (e.g., enolase and glyceraldehyde-3-phosphate dehydrogenase), and other regulatory proteins or factors (e.g., DNA-binding protein II and ATP-dependent protease). Most of these proteins have been found to play a role in the mechanisms of heat stress adaptation in other bacteria.  相似文献   

20.
Guy CL  Haskell D 《Plant physiology》1987,84(3):872-878
Spinach (Spinacia oleracea L. cv Bloomsdale) seedlings cultured in vitro were used to study changes in protein synthesis during cold acclimation. Seedlings grown for 3 weeks postsowing on an inorganic-nutrient-agar medium were able to increase their freezing tolerance when grown at 5°C. During cold acclimation at 5°C and deacclimation at 25°C, the kinetics of freezing tolerance induction and loss were similar to that of soil-grown plants. Freezing tolerance increased after 1 day of cold acclimation and reached a maximum within 7 days. Upon deacclimation at 25°C, freezing tolerance declined within 1 day and was largely lost by the 7th day. Leaf proteins of intact plants grown at 5 and 25°C were in vivo radiolabeled, without wounding or injury, to high specific activities with [35S]methionine. Leaf proteins were radiolabeled at 0, 1, 2, 3, 4, 7, and 14 days of cold acclimation and at 1, 3, and 7 days of deacclimation. Up to 500 labeled proteins were separated by two-dimensional gel electrophoresis and visualized by fluorography. A rapid and stable change in the protein synthesis pattern was observed when seedlings were transferred to the low temperature environment. Cold-acclimated leaves contained 22 polypeptides not found in nonacclimated leaves. Exposure to 5°C induced the synthesis of three high molecular weight cold acclimation proteins (CAPs) (Mr of about 160,000, 117,000, and 85,000) and greatly increased the synthesis of a fourth high molecular weight protein (Mr 79,000). These proteins were synthesized during day 1 and throughout the 14 day exposure to 5°C. During deacclimation, the synthesis of CAPs 160, 117, and 85 was greatly reduced by the first day of exposure to 25°C. However, CAP 79 was synthesized throughout the 7 day deacclimation treatment. Thus, the induction at low temperature and termination at warm temperature of the synthesis of CAPs 160, 117, and 85 was highly correlated with the induction and loss of freezing tolerance. Cold acclimation did not result in a general posttranslational modification of leaf proteins. Most of the observed changes in the two-dimensional gel patterns could be attributed to the de novo synthesis of proteins induced by low temperature. In spinach leaf tissue, heat shock altered the pattern of protein synthesis and induced the synthesis of several heat shock proteins (HSPs). One polypeptide synthesized in cold-acclimated leaves had a molecular weight and net charge (Mr 79,000, pI 4.8) similar to that of a HSP (Mr 83,000, pI 4.8). However, heat shock did not increase the freezing tolerance, and cold acclimation did not increase heat tolerance over that of nonacclimated plants, but heat-shocked leaf tissue was more tolerant to high temperatures than nonacclimated or cold-acclimated leaf tissue. When protein extracts from heat-shocked and cold-acclimated leaves were mixed and separated in the same two-dimensional gel, the CAP and HSP were shown to be two separate polypeptides with slightly different isoelectric points and molecular weights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号