首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the influence of elevated CO2 and nitrogen (N) fertilization on wood properties and energy, Populus × euramericana trees were exposed to ambient CO2 (about 370 μmol mol−1 CO2) or elevated CO2 (about 550 μmol mol−1 CO2) using Free Air CO2 Enrichment (FACE) technology in combination with two N levels. Elevated CO2 was maintained for 5 years. After three growing seasons, the plantation was coppiced, one half of each experimental plot was fertilized and secondary sprouts were harvested after two growing seasons. Fourier transform infrared (FT-IR) spectra of wood revealed significant effects of both elevated CO2 and N fertilization on wood chemistry, in particular, significant increases in lignin and decreases in N content. These results were corroborated by chemical analysis. Neither elevated CO2 nor N fertilization affected the calorific value of wood, which was 19.3 MJ kg−1. N fertilization enhanced the energy production per land area by 16–69% because of higher aboveground woody biomass production than on nonfertilized land. Estimates indicate that high yielding poplar short rotation cultivation may significantly contribute as an alternative feedstock for energy production.  相似文献   

2.
The responses of individual stomata to CO2 concentrations ranging from 0 to 900 μmol mol−1 air were analysed in Ipomoea pes-caprae L. Sweet (Convolvulaceae). The stomata were directly observed using a measurement system that permitted continuous observation of stomatal movement under controlled light and CO2 conditions. A CO2 concentration of 350 μmol mol−1 or higher induced stomatal closure, whereas concentrations below 350 μmol mol−1 did not. The time lag before stomatal closure decreased with increasing CO2 concentration, as did the steady-state aperture of the stomata after a change in CO2 concentration. However, the rate of stomatal closure increased with increasing CO2 concentration. Therefore, not only the stomatal closure rate but also the time from the CO2 concentration change to the beginning of stomatal closure changed with increasing CO2 concentration. These results suggest that atmospheric CO2 may be the stimulus for the closure of guard cells. No significant differences were observed between adaxial and abaxial stomata in terms of their responses to CO2. However, heterogeneous responses were detected between neighbouring stomata on each leaf surface.  相似文献   

3.
In order to assess the importance of nitrate-dependent Fe(II) oxidation and its impact on the growth physiology of dominant Fe oxidizers, we counted these bacteria in freshwater lake sediments and studied their growth physiology. Most probable number counts of nitrate-reducing Fe(II)-oxidizing bacteria in the sediment of Lake Constance, a freshwater lake in Southern Germany, yielded about 105 cells mL−1 of the total heterotrophic nitrate-reducing bacteria, with about 1% (103 cells mL−1) of nitrate-reducing Fe(II) oxidizers. We investigated the growth physiology of Acidovorax sp. strain BoFeN1, a dominant nitrate-reducing mixotrophic Fe(II) oxidizer isolated from this sediment. Strain BoFeN1 uses several organic compounds (but no sugars) as substrates for nitrate reduction. It also reduces nitrite, dinitrogen monoxide, and O2, but cannot reduce Fe(III). Growth experiments with cultures amended either with acetate plus Fe(II) or with acetate alone demonstrated that the simultaneous oxidation of Fe(II) and acetate enhanced growth yields with acetate alone (12.5 g dry mass mol−1 acetate) by about 1.4 g dry mass mol−1 Fe(II). Also, pure cultures of Pseudomonas stutzeri and Paracoccus denitrificans strains can oxidize Fe(II) with nitrate, whereas Pseudomonas fluorescens and Thiobacillus denitrificans strains did not. Our study demonstrates that nitrate-dependent Fe(II) oxidation contributes to the energy metabolism of these bacteria, and that nitrate-dependent Fe(II) oxidation can essentially contribute to anaerobic iron cycling.  相似文献   

4.
Elevated atmospheric CO2 concentration ([CO2]) stimulates seed mass production in many species, but the extent of stimulation shows large variation among species. We examined (1) whether seed production is enhanced more in species with lower seed nitrogen concentrations, and (2) whether seed production is enhanced by elevated [CO2] when the plant uses more N for seed production. We grew 11 annuals in open top chambers that have different [CO2] conditions (ambient: 370 μmol mol−1, elevated: 700 μmol mol−1). Elevated [CO2] significantly increased seed production in six out of 11 species with a large interspecific variation (0.84–2.12, elevated/ambient [CO2]). Seed nitrogen concentration was not correlated with the enhancement of seed production by elevated [CO2]. The enhancement of seed production was strongly correlated with the enhancement of seed nitrogen per plant caused by increased N acquisition during the reproductive period. In particular, legume species tended to acquire more N and produced more seeds at elevated [CO2] than non-nitrogen fixing species. Elevated [CO2] little affected seed [N] in all species. We conclude that seed production is limited primarily by nitrogen availability and will be enhanced by elevated [CO2] only when the plant is able to increase nitrogen acquisition.  相似文献   

5.
Elevated CO2 appears to be a significant factor in global warming, which will likely lead to drought conditions in many areas. Few studies have considered the interactive effects of higher CO2, temperature and drought on plant growth and physiology. We grew canola ( Brassica napus cv. 45H72) plants under lower (22/18°C) and higher (28/24°C) temperature regimes in controlled-environment chambers at ambient (370 μmol mol−1) and elevated (740 μmol mol−1) CO2 levels. One half of the plants were watered to field capacity and the other half at wilting point. In three separate experiments, we determined growth, various physiological parameters and content of abscisic acid (ABA), indole-3-acetic acid and ethylene. Drought-stressed plants grown under higher temperature at ambient CO2 had decreased stem height and diameter, leaf number and area, dry matter, leaf area ratio, shoot/root weight ratio, net CO2 assimilation and chlorophyll fluorescence. However, these plants had increased specific leaf weight, leaf weight ratio and chlorophyll concentration. Elevated CO2 generally had the opposite effect, and partially reversed the inhibitory effects of higher temperature and drought on leaf dry weight accumulation. This study showed that higher temperature and drought inhibit many processes but elevated CO2 partially mitigate some adverse effects. As expected, drought stress increased ABA but higher temperature inhibited the ability of plants to produce ABA in response to drought.  相似文献   

6.
Membrane-bound [NiFe]-hydrogenase from Hydrogenophaga sp. AH-24 was purified to homogeneity. The molecular weight was estimated as 100±10 kDa, consisting of two different subunits (62 and 37 kDa). The optimal pH values for H2 oxidation and evolution were 8.0 and 4.0, respectively, and the activity ratio (H2 oxidation/H2 evolution) was 1.61 × 102 at pH 7.0. The optimal temperature was 75 °C. The enzyme was quite stable under air atmosphere (the half-life of activity was c . 48 h at 4 °C), which should be important to function in the aerobic habitat of the strain. The enzyme showed high thermal stability under anaerobic conditions, which retained full activity for over 5 h at 50 °C. The activity increased up to 2.5-fold during incubation at 50 °C under H2. Using methylene blue as an electron acceptor, the kinetic constants of the purified membrane-bound homogenase (MBH) were V max=336 U mg−1, k cat=560 s−1, and k cat/ K m=2.24 × 107 M−1 s−1. The MBH exhibited prominent electron paramagnetic resonance signals originating from [3Fe–4S]+ and [4Fe–4S]+ clusters. On the other hand, signals originating from Ni of the active center were very weak, as observed in other oxygen-stable hydrogenases from aerobic H2-oxidizing bacteria. This is the first report of catalytic and biochemical characterization of the respiratory MBH from Hydrogenophaga .  相似文献   

7.
The effect of feeding level ( F L; 0·5 to 4% dry diet mass per wet fish body mass) and feeding frequency (once every 4 days to twice per day) on postprandial metabolic response was investigated in southern catfish Silurus meridionalis at 27·5° C. The results showed that there was no significant difference in the specific dynamic action (SDA) coefficient among the groups of different feeding levels ( P  > 0·05). The duration increased from 26·0 to 40·0 h and the peak metabolic rate increased from 207·8 to 378·8 mg O2 kg−1 h−1 when the feeding level was increased from 0·5 to 4%. The relationship between the peak metabolic rate ( R P, mg O2 kg−1 h−1) and F L could be described as: R P = 175·4 + 47·3 F L( r 2 = 0·943, n  = 40, P  < 0·001). The relationship between the SDA duration ( D , h) and F L could be described as D =30·97 F L0·248 ( r 2=0·729, n =40, P  < 0·001).  相似文献   

8.
The objective of the study was to investigate the interactive effects of elevated atmospheric carbon dioxide concentration, [CO2], and temperature on the wood properties of mature field-grown Norway spruce ( Picea abies (L.) Karst.) trees. Material for the study was obtained from an experiment in Flakaliden, northern Sweden, where trees were grown for 3 years in whole-tree chambers at ambient (365 μmol mol−1) or elevated [CO2] (700 μmol mol−1) and ambient or elevated air temperature (ambient +5.6 °C in winter and ambient +2.8 °C in summer). Elevated temperature affected both wood chemical composition and structure, but had no effect on stem radial growth. Elevated temperature decreased the concentrations of acetone-soluble extractives and soluble sugars, while mean and earlywood (EW) cell wall thickness and wood density were increased. Elevated [CO2] had no effect on stem wood chemistry or radial growth. In wood structure, elevated [CO2] decreased EW cell wall thickness and increased tracheid radial diameter in latewood (LW). Some significant interactions between elevated [CO2] and temperature were found in the anatomical and physical properties of stem wood (e.g. microfibril angle, and LW cell wall thickness and density). Our results show that the wood material properties of mature Norway spruce were altered under exposure to elevated [CO2] and temperature, although stem radial growth was not affected by the treatments.  相似文献   

9.
Changes in the extent of P700 oxidation (P700+) were investigated after chilling of barley, rice, pumpkin, and cucumber leaf segments at 4°C for 1 h under light with various photon flux densities. At 50 µmol photons m−2 s−1, the decrease in P700+ was observed only in cucumber, but at 150 µmol photons m−2 s−1, it was found in all plants except barley, revealing their expected chilling sensitivities. However, the decrease in P700+ by this short-term chilling was reversible in the presence of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea or methyl viologen, and it did not show any causal relationship with the decrease in the electron transfer rate nor with the down-regulation of photosystem II through the accumulation of zeaxanthin and the development of non-photochemical quenching. These results led to the suggestion that photosystem I (PSI) acceptor side limitation is a prerequisite for the decrease of P700+. Furthermore, PSI acceptor side limitation could be mainly due to limitation of electron-sink pathways such as CO2 assimilation and ascorbate–glutathione cycle, because treatment with glycolaldehyde which inhibits the former pathway, and with KCN which inhibits both pathways, decreased P700+ by 20–30% in barley leaves after chilling in the light.  相似文献   

10.
Spring waters from alpine karst aquifers are important drinking water resources. To investigate in situ heterotrophic prokaryotic production and its controlling factors, two different alpine karst springs were studied over two annual cycles. Heterotrophic production in spring water, as determined by [3H]leucine incorporation, was extremely low ranging from 0.06 to 6.83 pmol C L−1 h−1 (DKAS1, dolomitic-karst-spring) and from 0.50 to 75.6 pmol C L−1 h−1 (LKAS2, limestone-karst-spring). Microautoradiography combined with catalyzed reporter deposition-FISH showed that only about 7% of the picoplankton community took up [3H]leucine, resulting in generation times of 3–684 days. Principal component analysis, applying hydrological, chemical and biological parameters demonstrated that planktonic heterotrophic production in LKAS2 was governed by the respective hydrological conditions, whereas variations in DKAS1 changed seemingly independent from discharge. Measurements in sediments recovered from LKAS2, DKAS1 and similar alpine karst aquifers ( n =12) revealed a 106-fold higher heterotrophic production (average 19 μmol C dm−3 h−1) with significantly lower generation times as compared with the planktonic fraction, highlighting the potential of surface-associated communities to add to self-purification processes. Estimates of the microbially mediated CO2 in this compartment indicated a possible contribution to karstification.  相似文献   

11.
A recognized invasive weed, Canada thistle ( Cirsium arvense L. Scop.) was grown at ambient and pre-ambient concentrations of atmospheric carbon dioxide [CO2] (373 and 287 μmol mol−1, respectively) at three levels of supplemental nitrogen (N) (3, 6 and 14.5 m M ) from seeding until flowering [77 days after sowing (DAS)]. The primary objective of the study was to determine if N supply limited the potential photosynthetic and growth response of this species to the increase in atmospheric [CO2] which occurred during the 20th century (i.e. approximately 290 to 370 μmol mol−1 CO2). Leaf photosynthesis increased both as a function of growth [CO2] and N supply during the first 46 DAS. Although by 46 DAS photosynthetic acclimation was observed relative to a common measurement CO2 concentration, there was no interaction with N supply. Both [CO2] and N increased biomass, relative growth rates and leaf area whereas root : shoot ratio was increased by CO2 and decreased by increasing N; however, N supply did not effect the relative response to [CO2] for any measured vegetative parameter up to 77 DAS. Due to the relative stimulation of shoot biomass, total above-ground N increased at elevated [CO2] for all levels of supplemental N, but nitrogen use efficiency (NUE) did not differ as a function of [CO2]. Overall, these data suggest that any potential response to increased atmospheric [CO2] in recent decades for this noxious weedy species was probably not limited by nitrogen supply.  相似文献   

12.
Vile D  Shipley B  Garnier E 《Ecology letters》2006,9(9):1061-1067
We show that ecosystem-specific aboveground net primary productivity (SANPP, g g−1 day−1, productivity on a per gram basis) can be predicted from species-level measures of potential relative growth rate (RGRmax), but only if RGRmax is weighted according to the species' relative abundance. This is in agreement with Grime's mass-ratio hypothesis. Productivity was measured in 12 sites in a French Mediterranean post-agricultural succession, while RGRmax was measured on 26 of the most abundant species from this successional sere, grown hydroponically. RGRmax was only weakly correlated ( r 2 = 0.12, P  < 0.05) with field age when species abundance was not considered, but the two variables were strongly correlated ( r 2 = 0.81, P  < 0.001) when the relative abundance of species in each field was taken into account. SANPP also decreased significantly with field age. This resulted in a tight relationship ( r 2 = 0.77, P  < 0.001) between productivity and RGRmax weighted according to species relative biomass contribution. Our study shows that scaling-up from the potential properties of individual species is possible, and that information on potential and realized species traits can be integrated to predict ecosystem functioning.  相似文献   

13.
Aims:  To verify the taxonomic affiliation of bacterium Butyrivibrio fibrisolvens strain A from our collection and to characterize its enzyme(s) responsible for digestion of sucrose.
Methods and Results:  Comparison of the 16S rRNA gene of the bacterium with GenBank showed over 99% sequence identity to the species Pseudobutyrivibrio ruminis . Molecular filtration, native electrophoresis on polyacrylamide gel, zymography and thin layer chromatography were used to identify and characterize the relevant enzyme. An intracellular sucrose phosphorylase with an approximate molecular mass of 52 kDa exhibiting maximum activity at pH 6·0 and temperature 45°C was identified. The enzyme was of inducible character and catalysed the reversible conversion of sucrose to fructose and glucose-1-P. The reaction required inorganic phosphate. The K m for glucose-1-P formation and fructose release were 3·88 × 10−3 and 5·56 × 10−3 mol l−1 sucrose, respectively – while the V max of the reactions were −0·579 and 0·9  μ mol mg protein−1 min−1. The enzyme also released free glucose from glucose phosphate.
Conclusion:  Pseudobutyrivibrio ruminis strain A utilized sucrose by phosphorolytic cleavage.
Significance and Impact of the Study:  Bacterium P. ruminis strain A probably participates in the transfer of energy from dietetary sucrose to the host animal.  相似文献   

14.
Monoterpene levels in current year needles of Douglas fir ( Pseudotsuga menziesii (Mirb.) Franco) seedlings were measured at the end of 4 years of exposure to ambient or elevated CO2 (+179 µmol mol−1), and ambient or elevated temperature (+0.3.5^C). Eleven monoterpenes were identified and quantified using gas chromatography/flame ionization detector/mass spectroscopy, with eight of these compounds regularly occurring in all trees examined. Elevated CO2 exposure significantly reduced the levels for four of the eight main compounds in needles. Total monoterpene production was reduced by 52% ( P  < 0.05). Elevated temperature also reduced monoterpene levels ( P  < 0.07). The combination of elevated temperature and elevated CO2 resulted in a 64% reduction in total monoterpenes compared with needles on ambient temperature trees. Two-way anova showed no significant temperature-CO2 interaction. It is hypothesized that seasonal reductions in needle monoterpene pools under elevated CO2 and temperature conditions may be due to a combination of competing carbon sinks, including increased carbon flux through the roots.  相似文献   

15.
Measurement of stable isotopes in plant dry matter is a useful phenotypic tool for speeding up breeding advance in C3 crops exposed to different water regimes. However, the situation in C4 crops is far from resolved, since their photosynthetic metabolism precludes (at least in maize) the use of carbon isotope discrimination. This paper investigates the use of oxygen isotope enrichment (Δ18O) as a new secondary trait for yield potential and drought resistance in maize ( Zea mays L). A set of tropical maize hybrids developed by the International Maize and Wheat Improvement Center was grown under three contrasting water regimes in field conditions. Water regimes clearly affected plant growth and yield. In accordance with the current theory, a decrease in water input was translated into large decreases in stomatal conductance and increases in leaf temperature together with concomitant 18O enrichment of plant matter (leaves and kernels). In addition, kernel Δ18O correlated negatively with grain yield under well-watered and intermediate water stress conditions, while it correlated positively under severe water stress conditions. Therefore, genotypes showing lower kernel Δ18O under well-watered and intermediate water stress had higher yields in these environments, while the opposite trend was found under severe water stress conditions. This illustrates the usefulness of Δ18O for selecting the genotypes best suited to differing water conditions.  相似文献   

16.
The analysis of δ 13C and δ 18O in tree-ring archives offers retrospective insights into environmental conditions and ecophysiological processes. While photosynthetic carbon isotope discrimination and evaporative oxygen isotope enrichment are well understood, we lack information on how the isotope signal is altered by downstream metabolic processes.
In Pinus sylvestris , we traced the isotopic signals from their origin in the leaf water ( δ 18O) or the newly assimilated carbon ( δ 13C), via phloem sugars to the tree-ring, over a time-scale that ranges from hours to a growing season.
Seasonally, variable 13C enrichment of sugars related to phloem loading and transport did lead to uncoupling between δ 13C in the tree-ring, and the c i/ c a ratio at the leaf level. In contrast, the oxygen isotope signal was transferred from the leaf water to the tree-ring with an expected enrichment of 27‰, with time-lags of approximately 2 weeks and with a 40% exchange between organic oxygen and xylem water oxygen during cellulose synthesis.
This integrated overview of the fate of carbon and oxygen isotope signals within the model tree species P. sylvestris provides a novel physiological basis for the interpretation of δ 13C and δ 18O in tree-ring ecology.  相似文献   

17.
Energy density of anchovy Engraulis encrasicolus L. in the Adriatic Sea   总被引:1,自引:0,他引:1  
European anchovy Engraulis encrasicolus , with total lengths ranging from 40·0 to 132·5 mm, were sampled during October 2002 and May 2003 in the northern Adriatic Sea in order to estimate their energy densities ( E D). A highly significant ( P  < 0·001) relationship between E D(y)(J g−1wet mass) and per cent dry mass ( x ) was found: y  = 321 x  − 3316·9 ( n  = 161, r 2 = 0·82).  相似文献   

18.
Ceramide is an important molecule not only structurally but also regulationally as a modulator of various cellular events. Ceramidase (CDase) are classified into three different types (acid, alkaline, and neutral CDases). Neutral CDase could play an important role in the regulation of ceramide levels in the extracellular space. In this study, we describe the characterization of a neutral CDase orthologue from the filamentous fungus Aspergillus oryzae . The gene encoding the neutral CDase orthologue was cloned and overexpressed in A . oryzae . The purified recombinant enzyme was optimally active at pH 4.0–4.5 and 40 °C. The apparent K m and V max values of the enzyme for C12-NBD-ceramide were 3.32 μM and 0.085 μmol min−1 mg−1, respectively.  相似文献   

19.
Water-use efficiency and stable isotope composition were studied in three tropical tree species. Seedlings of Tectona grandis , Swietenia macrophylla and Platymiscium pinnatum were grown at either high or low water supply, and with or without added fertilizer. These three species previously exhibited low, intermediate and high whole-plant water-use efficiency ( TE ) when grown at high water supply in unfertilized soil. Responses of TE to water and nutrient availability varied among species. The TE was calculated as experiment-long dry matter production divided by cumulative water use. Species-specific offsets were observed in relationships between TE and whole-plant 13C discrimination (Δ13Cp). These offsets could be attributed to a breakdown in the relationship between Δ13Cp and the ratio of intercellular to ambient CO2 partial pressures ( c i/ c a) in P. pinnatum , and to variation among species in the leaf-to-air vapour pressure difference ( v ). Thus, a plot of v · TE against c i/ c a showed a general relationship among species. Relationships between δ 18O of stem dry matter and stomatal conductance ranged from strongly negative for S. macrophylla to no relationship for T. grandis . Results suggest inter-specific variation among tropical tree species in relationships between stable isotope ratios ( δ 13C and δ 18O) and the gas exchange processes thought to affect them.  相似文献   

20.
Inflorescences of arum lilies have a three-part spadix with a scent-producing, sterile appendix above two bands of fertile male and female florets. The appendix and male florets are thermogenic, but with different temporal patterns. Heat-production was measured in Arum concinnatum , A. creticum and A. idaeum . The male florets of A. concinnatum showed a 3 d continuous episode of thermogenesis with three waves, and the appendix warmed in a single, 6 h episode. Maximum fresh-mass-specific CO2 production rate was 0.17  µ mol s−1 g−1 to achieve a 10.9 °C temperature elevation by the appendix, and 0.92  µ mol s−1 g−1 to achieve a 4.8 °C elevation by male florets. Reversible, physiological temperature regulation was not evident in either tissue. Respiration increased with tissue temperatures with Q10 values of 1.8–3.9, rather than less than 1.0 as occurs in thermoregulatory flowers. Experimental step changes in temperature of appendix and male floret tissues also failed to show thermoregulatory responses. The patterns of thermogenesis therefore appear to be fixed by the temporal sequence of blooming. Thermogenesis in the alpine species, A. creticum and A. idaeum , was significantly lower than in the lowland A. concinnatum , possibly related to difficulty in raising floral temperature in their cold and windy habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号