首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dark taiga of Siberia is a boreal vegetation dominated by Picea obovata, Abies sibirica, and Pinus sibirica during the late succession. This paper investigates the population and age structure of 18 stands representing different stages after fire, wind throw, and insect damage. To our knowledge, this is the first time that the forest dynamics of the Siberian dark taiga is described quantitatively in terms of succession, and age after disturbance, stand density, and basal area. The basis for the curve–linear age/diameter relation of trees is being analyzed. (1) After a stand-replacing fire Betula dominates (4,000 trees) for about 70 years. Although tree density of Betula decreases rapidly, basal area (BA) reached >30 m2/ha after 40 years. (2) After fire, Abies, Picea, and Pinus establish at the same time as Betula, but grow slower, continue to gain height and eventually replace Betula. Abies has the highest seedling number (about 1,000 trees/ha) and the highest mortality. Picea establishes with 100–400 trees/ha, it has less mortality, but reached the highest age (>350 years, DBH 51 cm). Picea is the most important indicator for successional age after disturbance. Pinus sibirica is an accompanying species. The widely distributed “mixed boreal forest” is a stage about 120 years after fire reaching a BA of >40 m2/ha. (3) Wind throw and insect damage occur in old conifer stands. Betula does not establish. Abies initially dominates (2,000–6,000 trees/ha), but Picea becomes dominant after 150–200 years since Abies is shorter lived. (4) Without disturbance the forest develops into a pure coniferous canopy (BA 40–50 m2/ha) with a self-regenerating density of 1,000 coniferous canopy trees/ha. There is no collapse of old-growth stands. The dark taiga may serve as an example in which a limited set to tree species may gain dominance under certain disturbance conditions without ever getting monotypic.  相似文献   

2.
Morphological changes in the decomposing litter ofAbies spp. andBetula spp. in a mor humus form were studied by a rapid thin section method. According to the morphological characteristics, the epidermis, mesophyll and vascular bundleof Abies needle litter were classified into four types: (i) newly fallen; (ii) slightly decomposed; (iii) moderately decomposed; and (iv) greatly decomposed. The distribution of these tissue types along the profile of the forest floor was then investigated. The morphological changes in other litter types, such as branches, scales andBetula leaves during decomposition were observed directly with microscope and electron microscope. Five vertical thin sections and 80 horizontal thin sections were used for these observations and investigations. the decomposition ofAbies litter was slower than that ofBetula litter. The relative decomposition rate of the tissues was in the order of: mesophyll>vascular bundle >epidermis inAbies needles; mesophyll≥epidermis>vascular bundles inBetula leaves; and inner bark >xylem>outer bark in bothAbies andBetula branches. The last remains of the litter were usually stomata, segments of seminiferous scale and outer bark ofAbies. The decomposition of plant litter occurred mainly within the L and F layers of the soil (0–5 cm in depth).Abies needles andBetula leaves completely disappeared at depths of 0–6 cm and 0–4 cm, respectively. Branches disappeared within the top of 5 cm and 6–8 cm forBetula and forAbies, respectively. The scales ofAbies were most slowly decomposed in the soil layers.  相似文献   

3.
Abstract. Microhabitats for seedling establishment and gap regeneration in subalpine forests of northern Japan were studied for two conifers, Abies sachalinensis and Picea glehnii. The abundance of understorey dwarf bamboo (Sasa spp.) was different for the four plots examined. Two types of micro-habitats were recognized for the two conifers: ground and elevated woody substrates (fallen logs and buttresses). Picea regenerated mostly on elevated sites, while Abies regenerated on both ground and elevated sites. The densities of Picea were independent of those of Sasa, but Abies densities decreased with increasing abundance of Sasa because Sasa reduced regeneration on the ground. Density of Abies on elevated sites was higher than that of Picea, irrespective of Sasa and of the density of adult trees. There was no significant difference in growth in sapling trunk height between the two conifers, but Picea grew more slowly under the canopy than Abies and was aggregated into gaps. Thus, in forests with less Sasa, the recruitment capacity of Abies was greater than that of Picea. The long life span of Picea compensated for its low density on elevated sites. Examination of a dynamic system model showed that Picea was excluded by Abies in forests without Sasa because regeneration on the ground is more advantageous than on elevated sites, but the two conifers could coexist in forests with Sasa because of the increased relative success of regeneration on elevated sites by Picea saplings.  相似文献   

4.
Tree regeneration on rotten wood and on soil in old-growth stand   总被引:1,自引:0,他引:1  
Forest regeneration on soil and on decaying wood was studied in natural mixed stand of Facus sylvatica L., Abies alba Mill. and Picea abies Karst. in Babia Góra National Park, Western Carpathians.Downed wood, divided into five decay classes covered around 6% of the forest floor. Among seedlings, Fagus and Abies codominated, while Picea was less numerous. The average seedling density on the soil with herb layer (240 ind./100 m2) was higher than on the logs, even on the strongly decayed ones (177 ind./100 m2). However, the density of Abies and Picea seedlings was higher on the rotten wood than on soil. Seedling survival of all species was better on the logs, especially in conifers. Because of the total dominance of Fagus among saplings, the presence of Abies and Picea in the next generation of canopy trees can strongly depend upon their regeneration on decaying wood.  相似文献   

5.
European forests are populated with a variety of wind‐pollinated tree species. Their pollen productivity and spatio‐temporal pattern are largely unknown. Long‐term data (17 years) collected at 22 sites across Austria were presented and the pollen production of 12 tree genera was analysed. We ranked the tree genera according to their pollen productivity taking actual tree abundances of the Austrian Forestry Inventory into account. The productivity varied strongly among tree genera with a maximum for Betula. Pollen production in Larix, Abies and Picea amounted to approximately 1/20, while in increasing order Salix, Quercus, Alnus, Populus and Fraxinus produced approximately 1/3 to 1/4 of the respective Betula estimate. In general, pollen quantity in broadleaves was higher than in conifers. We analysed the temporal pollen production pattern by means of hierarchical cluster analysis and identified three major groups: [(Fagus, Larix, Picea, Abies), (Alnus, Betula, Fraxinus)], [Carpinus],[Populus, Salix, Pinus, Quercus]. Distance matrices based on life‐history traits as well as molecular phylogeny were also constructed; they correlated significantly with each other by means of Mantel‐tests. However, there was no significant relationship between the distances on temporal pollen production with the other matrices. Intermittent or idiosyncratic pollen production was studied by means of deviation from expected means, skewness and spindle diagrams. We proposed that Fagus, Carpinus, Larix, Picea and Abies belong to ‘masting pollen producers’, while the remaining genera idiosyncratically produced pollen over the monitored period. Moreover we correlated the distance matrix of pollen production for each tree genus at each sampling site with respective ‘ecological distance matrices’ based on aerial and altitudinal distance among sites. Significant correlations were detected for tree genera (Fagus, Larix, Picea) which were also prone to pollen masting, thus indicating a Moran effect.  相似文献   

6.
Six pollen diagrams from peat bogs in the Vltavsky luh (upper Vltava river valley) provide new information about vegetation reconstruction, woodland dynamics, and local development of mires during the Late-glacial and Holocene. Vegetation development began in the Oldest Dryas/B?ling with open park plant cover. In the Aller?d, woodland with Pinus and Betula developed, and in the Younger Dryas there was a steppe tundra with plants of open habitats. In the Pre-boreal, woodland tundra grew. In the Boreal, Corylus spread, and a major expansion of Picea began in the early Boreal. Picea spread during the Atlantic probably by two different migration routes. Fagus immigrated earlier than in the Bayerischer Wald and Oberpf?lzer Wald in the adjoining parts of Germany, and had its major expansion in the early Atlantic. Abies expanded in the late Atlantic. The great abundance of Abies in this area is remarkable, forming Abies or Abies-Fagus woods in less extreme habitats. Human occupation started in the Sub-boreal, as shown by both archaeology and palynology. However, human impact is recognized from anthropogenic indicators which appear in the early Atlantic. At the end of the later Sub-atlantic the development of natural woodland was interrupted by plantation of Picea according to historical and palynological evidence. Received November 13, 2000 / Accepted July 7, 2001  相似文献   

7.
Stand structure and regeneration in a Kamchatka mixed boreal forest   总被引:1,自引:0,他引:1  
Abstract. A 1‐ha plot was established in a Betula platyphylla‐Picea ajanensis mixed boreal forest in the central Kamchatka peninsula in Russia to investigate stand structure and regeneration. This forest was relatively sparse; total density and stand basal area were 1071/ha and 25.8 m2/ha, respectively, for trees > 2.0 cm in trunk diameter at breast height (DBH). 25% of Betula regenerated by sprouting, and its frequency distribution of DBH had a reverse J‐shaped pattern. In contrast, Picea had a bimodal distribution. The growth rates of both species were high, reaching 20 m in ca. 120 yr. The two species had clumped distributions, especially for saplings. Betula saplings were not distributed in canopy gaps. Small Picea saplings were distributed irrespective of the presence/absence of gaps, while larger saplings aggregated in gaps. At the examined spatial scales (6.25–400 m2) the spatial distribution of Betula saplings was positively correlated with living Betula canopy trees and negatively with dead Picea canopy trees. This suggests that Betula saplings regenerated under the crowns of Betula canopy trees and did not invade the gaps created by Picea canopy trees. The spatial distribution of Picea saplings was negatively correlated with living and dead Betula canopy trees and positively with dead Picea canopy trees. Most small Picea seedlings were distributed under the crowns of Picea trees but not under the crowns of Betula trees or in gaps. This suggests that Picea seedlings establish under the crowns of Picea canopy trees and can grow to large sizes after the death of overhead Picea canopy trees. Evidence of competitive exclusion between the two species was not found. At a 20 m × 20 m scale both skewness and the coefficient of variation of DBH frequency distribution of Picea decreased with an increase in total basal area of Picea while those of Betula were unchanged irrespective of the increase in total basal area of Betula. This indicates that the size structure of Picea is more variable with stand development than that of Betula on a small scale. This study suggests that Betula regenerates continuously by sprouting and Picea regenerates discontinuously after gap formation and that the species do not exclude each other.  相似文献   

8.
Michalet  R.  Rolland  Ch.  Joud  D.  Gafta  D.  Callaway  R.M. 《Plant Ecology》2003,165(2):145-160
Spatialassociations among overstory and understory species tend to increase ongradients from wet to dry climates. This shift in the strength of spatialassociations has usually been attributed to shared abiotic requirements betweencanopy species and understory assemblages within communities and/or to anincrease in habitat heterogeneity in dry climates and therefore higher betadiversity. On another hand, more important positive effects of tree canopies onunderstory species in drier climates may also explain stronger associations andhigher beta diversity. We examined these three hypotheses along a strongrainshadow gradient that occurs from the wet external Alps to the dry innerAlpsby analyzing with correspondence analysis and canonical correspondence analysisthe species composition of 290 relevés of forests dominated to differentdegrees by Abies alba and Piceaabies.We found important differences in climatic requirements forAbies and Picea, withAbies occurring in warmer and drier habitats thanPicea. The understory species associated with these twospecies showed similar correlations with temperature but not with moisture,withunderstory species of Picea-communities having strongerxeric affinities than understory species ofAbies-communities. We found no significant associationsbetween canopy species and understory composition in the external Alps despitethe fact that Abies and Piceaoccurredin substantially different environments. In contrast,Abiesand Picea occurred in more similar environments in theinner Alps, but the understory assemblages associated with eitherAbies or Picea were significantlydifferent. This increase in canopy-understory associations was in partdetermined by strong differences in moisture between southern and northernaspects in the inner Alps, which affected both canopy and understory speciesdistributions. However, differences between the canopy effects ofPicea and Abies also appeared tocontribute to stronger associations between canopy and understory species, andconsequently to increase beta diversity. This pattern only occurred on southernaspects of the inner Alps but was highly significant. Our results suggest thatspecies distributions may be continuous on the wet ends of moisture gradientsbut discrete on dry ends. Relatively discrete communities at stressful ends ofgradients appear to develop as a result of both habitat differentiation and thepositive effects of overstory species.  相似文献   

9.
Tree regeneration after bamboo die-back in Chinese Abies-Betula forests   总被引:2,自引:0,他引:2  
Abstract. Gaps created by disturbance in the forest canopy are important sites for tree regeneration from seed but plants already established in gaps may slow gap-filling. This study deals with consequences of bamboo die-back for tree regeneration and the dynamics of Abies-Betula forests in southwest China. Bamboo dominates the forest understory impeding tree regeneration when in its vegetative phase. Populations of tree seedlings were sampled in 1984–85 and 1990 in two sets of permanent plots where bamboo had died back in 1983. Both Abies and Betula density increased after bamboo die-back, Betula more so than Abies, especially in gaps. Before bamboo die-back, seedlings were established on raised surfaces such as logs but afterwards seedlings became common on the forest floor. This reduced the intensity of clumping of seedling populations between 1984 and 1990. A tree by tree replacement model predicts an increase in Abies and a decrease in Betula after bamboo die-back. Life histories of tree species, gap characteristics, and the bamboo growth cycle (mature/die-back/building) interact to promote fluctuating dominance of Abies and Betula in old-growth forests.  相似文献   

10.
Vegetation in canopy gaps of two old-growth Abies-Betula forest stands, one with bamboo the other without, was measured. The structure of gap vegetation at each site was used to derive tree replacement probabilities. Transition probabilities indicate different tree replacement trends in forests with bamboo compared to those without. Projected compositions show Betula to be the most abundant species in bamboo stands while Abies remains most abundant where bamboo was absent. A dense bamboo sward seems to reduce the probability of Abies filling gaps by inhibiting establishment and growth of seedlings. Bamboo preempts space after canopy gap formation by increasing shoot production which reduces opportunities for establishment and growth of other woody species. Differences in dispersal ability and longevity of Abies and Betula appear to be important factors contributing to their coexistence forests with a small canopy gap disturbance regime.  相似文献   

11.
Abstract. In a montane mixed Fagus‐Abies‐Picea forest in Babia Gora National Park (southern Poland), the dynamics of an old‐growth stand were studied by combining an 8‐yr annual census of trees in a 1‐ha permanent sample plot with radial increments of Abies and Picea growing in the central part of the plot. The mortality among the canopy trees was relatively high (10% in 8 yr), but the basal area increment of surviving trees slightly exceeded the losses caused by tree death. DBH increment was positively correlated with initial diameter in Abies and Picea, but not in Fagus. For individual trees smaller than the median height, basal area increment was positively related to the basal area of old snags and the basal area of recently deceased trees in their neighbourhood, but negatively related to the basal area of live trees. Dendrochronological analysis of the past growth patterns revealed numerous periods of release and suppression, which were usually not synchronized among the trees within a 0.3 ha plot. The almost normal distribution of canopy tree DBH and the small number of young individuals in the plot indicated that stand dynamics were synchronized over a relatively large area and, hence, were consistent with the developmental phase concept. On the other hand, the lack of synchronization among periods of growth acceleration in individual mature Abies and Picea trees conforms more closely to the gap‐dynamics paradigm.  相似文献   

12.
T. Kohyama 《Oecologia》1984,62(2):156-161
Summary The mechanism of coexistence of the dominant firs Abies veitchii and A. mariesii is described in relation to regeneration patterns for climax subalpine forests of the northern Yatsugatake Mountains, central Honshu, Japan. Two mature stand types, pure conifer stands of Abies spp., and mixed stands of Abies spp. and hardwoods (mainly the birch Betula ermanii), are distinguished. Pure stands are likely to show simultaneous decay, followed by evenaged regeneration of stand-floor seedlings (<20 cm tall), Rapidly growing A. veitchii dominates over A. mariesii in this type of regeneration, which is occasionally invaded by light-demanding Betula. In constrast, mixed stands degenerate rather slowly, followed by the regeneration of Abies from the bank of suppressed saplings (>20 cm tall), which persist only in mixed stands. The more shade-tolerant A. mariesii is supeior in this type of regeneration, while Betula does not succeed, and mixed stands change to pure stands with time. The fact that two patterns of Abies regeneration occur in a certain ratio in the forest is what enables the two Abies species to coexist. A simple dynamical system model supports this conclusion.  相似文献   

13.
The density of wild ungulates has increased in the last century, and browsing has become a major driver of forest succession in the northern hemisphere. In addition, tree species are expected to respond differently to future climate conditions, especially an increased frequency of late frost events. The aim of this study was to analyze the influence of intraspecific genetic variation on the recovery of two tree species to frost and browsing. An experiment with saplings from 90 Abies alba and 72 Picea abies seed sources was conducted. Five‐year‐old saplings were clipped at three intensities before budburst in spring. Growth (height, diameter, leader shoot length, and biomass) and quality (e.g. stem form, multistemming, reaction type) were assessed before and 1–2 years after clipping or 3–4 years after natural frost events, and provenance differences were related to environmental differences at the seed source. For Abies, frost and clipping resulted in reduced height growth in the first year after the stress and reduced height for two (clipping) to four (frost) vegetation periods. Sapling biomass, diameter increment, and quality decreased after heavy clipping. For Picea, which grew twice as fast as Abies, such effects were only found after frost damage. Population differences were significant for both species for all investigated growth traits and for Picea also for some quality variables. The “reaction type” after browsing (e.g. new shoot, existing twig bending upward) seems to be species specific and independent of seed source. In contrast, the time lag between clipping and formation of a clear new leader shoot increased for Abieswith lower temperatures at the seed source. Lowland populations with warmer climates grew faster, and for Picea also qualitatively better, and recovered faster from leader shoot loss (Abies) or reacted at the uppermost meristem (Picea). Thus, the investigated stressors increased the existing differences among populations.  相似文献   

14.
Abstract. 14 old, unlogged, Picea-dominated stands in the moist cool Sub-Boreal Spruce biogeoclimatic subzone of central British Columbia, Canada, were sampled to describe canopy heterogeneity, regeneration patterns and tree population age structures. These stands are composed of Picea engelmannii × glauca hybrids, Abies lasiocarpa and lesser amounts of Pinus contorta and Populus tremuloides, and had survived 124–343 yr since the last stand-destroying wildfire. Canopy cover was patchy and highly variable (ranging from 30.5 % to 86.4 %) but was not significantly related to stand age. Vertical canopy structure was less variable, reflecting the shade-tolerance and live crown ratios (length of live canopy expressed relative to tree height) of component species: 18.8 % for Populus, 20.2 % for Pinus, 46.7 % for Picea and 51.4 % for Abies. Individual stands varied considerably in their population structures and in their stand development trajectories, yet some patterns are evident. Survivors of the initial post-disturbance cohort of trees took 51 to 118 yr (mean = 80, s.d. = 20) to establish. Some stands had all tree species present during stand initiation, while other stands indicated early successional roles for Populus and Pinus, or a late successional role for Abies. Abies recruitment, while often slow in the beginning, occurs uniformly throughout the history of most stands, reflecting the high shade-tolerance of this species. Picea is often recruited in high densities early in stand development, and then (after long periods of exclusion) may be displaced by Abies in some stands but maintains itself in others. Minor, single-tree disturbances (due to bark beetles, root rot, and windthrow) were important in accelerating the reinitiation of Picea in the understory. Results thus suggest that stands from this region can be self-perpetuating in the absence of fire. Yet, post-fire tree populations still clearly dominate these spruce-fir forests, for only the oldest stand had greater basal area in the replacement cohort than in the initial cohort.  相似文献   

15.
Death of canopy trees when gaps are formed was studied in a subalpine coniferous forest, central Japan, which was composed ofAbies, Tsuga, Picea, Betula, andSorbus. Typhoons were considered to be the most important cause of the death of canopy trees. The degree of disturbance in each of 16 plots (20 m×20 m) was represented by the percentage of the total basal area of dead trees to that of living and dead canopy trees (disturbance magnitude; MAG). The mortality of canopy trees increased as their dbh increase in the plots of lower MAG than 90%. The mortality varied among genera, andTsuga was characterized as having lower mortality than that of the other conifers. 418 dead trees were observed. The standing dead trees made up 10.7% of the trees, the stem broken trees 46.7%, and the uprooted trees 42.2%. The stem breaking was most frequent inAbies, and the uprooting was most frequent inTsuga, Picea, andBetula. Undeveloped forests, which have the L-shaped dbh distribution, were destroyed only in high degree (70%<MAG), while developed forests were destroyed in various degrees (30%<MAG<100%). The percentage of uprooted trees in basal area decreased with the development of the forest, from 60% to 10%.  相似文献   

16.
Summary Thirty stands of Picea-Abies dominated forest in highland areas of northern Alberta were studied quantitatively. The highlands are cooler and receive more precipitation than the adjacent lowlands in summer. Orthic Grey Luvisols are the most common soil type.Based on morphological criteria the Picea was basically P. glauca, the Abies mostly A. balsamea, and the Pinus nearly all P. contorta var. latifolia. The boreal floristic element in stands increases from west to east and from high to low altitude.Four Picea-Abies community types were recognized using ordination and cluster analysis: Rubus pedatus/Ptilium crista-castrensis, Cornus canadensis-Linnaea borealis, Viburnum edule/Hylocomium splendens, Calamagrostis canadensis. The 4 community types are well correlated with altitude, soil nutrient status, and 2 groups of correlated floristic and structural variables.The floristic and structural affinities of the 4 community types to those of adjacent regions are discussed.The Picea-Abies stands studied are considered to belong to a group of climax community types, with Abies dominance indicated at higher altitudes, shifting to Picea dominance at lower altitudes.Nomenclature follows Moss (1959) for vascular plants, with the exception of Dryopteris (Britton 1972) and Betula (Dugle 1966); Lawton (1971) for mosses; Schofield (1968) for hepatics; and Hale & Culberson (1970) for lichens.We thank E. M. Achuff and T. P. Achuff for field assistance; D. M. Britton, M. Dumais, M. Ostafichuk, W. Peterson and D. H. Vitt for taxonomic assistance; the Dept of Soil Science, University of Alberta and the Research Branch, Agriculture Canada for the use of laboratory equipment, Financial support was received from the Boreal Institute for Northern Studies and the National Research Council of Canada (A-2570 La Roi).  相似文献   

17.
Population age structure and succession were investigated in subalpine forests in the Colorado Front Range dominated by Pinus flexilis (limber pine). Age, size, and spatial data were collected from three recent burns (<100 yr old), six ca. 240 year-old post-fire stands, and two old-growth stands (individuals > 400 yr old). The sequence of colonization of now extant trees on these post-fire sites appeared to be consistent: first Pinus flexilis, then Picea engelmannii (Engelmann spruce), and later Abies lasiocarpa (subalpine fir) with a delay between the first Pinus flexilis and Abies of as long as 140 yr. The advantage of Pinus flexilis on post-burn sites can be attributed to avian seed dispersal and the exceptional drought tolerance of its seedlings. The three recent burns were not extensive, and the delay in establishment of Picea and Abies appeared to be limited by harsh site conditions rather than lack of seed dispersal. Spatial analysis indicated a consistent, although sometimes weak, attraction between Pinus flexilis and Picea and Pinus flexilis and Abies at a scale of 1–4 m, suggesting that Pinus flexilis may facilitate establishment of Picea and Abies seedlings by providing shade or protection from wind. On xeric to slightly xeric sites, Pinus flexilis appeared to form broadly even-aged, non-regenerating populations that were gradually being replaced by Picea and Abies. Replacement is proceeding at a faster rate on the least xeric sites (north aspects, valley bottoms) compared to the most xeric sites (south aspects). On the most extreme sites, Pinus flexilis formed all-aged, self-maintaining populations with no evidence of replacement by Picea and Abies. In these old-growth forests with occasional trees aged at > 1300 yr, recruitment is continuous or episodic.  相似文献   

18.
Gap characteristics and gap regeneration were studied in three old-growth stands of subalpine coniferous forests in the northern Yatsugatake and the northern Akaishi mountains, central Japan. With the results of the present study and those of a previous study conducted in another locality, general features of gap characteristics and gap regeneration behavior of major tree species in subalpine coniferous forests of central Japan were summarized and discussed. Of the total 237 gaps investigated in the 14.48 ha of forested area, the percentage gap area to surveyed area, gap density and mean gap size were 7.3%, 17.2 ha−1, and 43.3 m2, respectively. The gap size distributions were similar among stands and showed a strong positive skewness with a few large and many small gaps; gaps <40m2 were most frequent and those >200 m2 were rare. Gaps due to the death of multiple canopy trees comprised 44.7% of the total ones. Canopy trees died in various states; standing dead (42.6%) or trunk broken (43.7%) were common and uprooted (12.2%) was an uncommon type of death of canopy trees. These figures indicate that general features of gap characteristics in this forest type are the low proportion of gap area and the high proportions of small gap size and multiple-tree gap formation. In general, shade-tolerantAbies frequently, andTsuga, infrequently, regenerate in gaps from advance regenerations recruited before gap formation, whilePicea and shade-intolerantBetula possibly regenerate in gaps from new individuals recruited after gap formation. Gap successors of conifers occurred in a wide range of gap size and did not show the clear preference to species specific gap size. In old-growth stands without large-scale disturbance (≥0.1 ha in area) of subalpine coniferous forests of central Japan, major tree species may coexist with their different gap-regeneration behaviors and, probably, different life history traits.  相似文献   

19.
The regeneration process of a subalpine coniferous forest, a mixed forest ofTsuga diversifolia (dominant species),Abies veitchii, Abies mariessi, andPicea jezoensis var.hondoensis, was studied on the basis of annual ring data. The age class distribution was discontinuous and four age groups occurred in the study plot (30m×30m). The canopy layer was a mosaic of patches (83.8–133.7 m2 patch area), which had different mean ages. The recruitment of canopy trees was carried out only by advance regeneration in the plot. The diameter growth ofAbies andPicea exceeded diameter growth ofTsuga in the gap.Abies lived for 200–300 years and their trunks were susceptible to heart rot.Picea lived for 300–400 years andTsuga for more than 400 years. The regeneration process derived from the analysis of the plot consisted of three phases leading to the development of a even-aged patch; (1) the establishment of saplings before a gap opening, (2) the opening of a gap in the canopy and repair of the canopy by advance regenerated saplings dominated by rapid growth species,Abies andPicea, and (3) the dying off of canopy trees as each species reached the end of its life-span, resulting in pure patches of long-livedTsuga.  相似文献   

20.
Twenty five surface samples/moss cushions were collected for palynological analysis from open areas of Reasi District, Jammu and Kashmir (India). These samples were used to investigate the relationships between extant vegetation and modern pollen spectra, which serve as modern analogue for the reliable ecological interpretation of fossil pollen records. The present vegetation in the region comprises tropical dry deciduous forests and subtropical pine forests with scattered stands of oak. The pollen analysis reveals that Pinus sp. (average 69% in the pollen assemblages), amongst the conifers, dominates the pollen rain, which can be attributed to its high pollen productivity and exceptional pollen dispersal efficiency. Cedrus sp. and Podocarpus sp. pollen contribute with an average of 16 and 5% to the total pollen rain. Other conifers such as Picea sp., Abies sp., Juniperus sp. and Tsuga sp., as well as broad-leaved taxa such as Quercus sp., Alnus sp., Betula sp., Carpinus sp., Corylus sp., Juglans sp., Ulmus sp., Salix sp., Elaeocarpus sp., Mallotus sp. and Aesculus sp., have lower averages of 1 to 4.5% in the total pollen rain which could be either due to their poor pollen dispersal efficiency or to the poor preservation in the samples. Tubuliflorae (average 25%), Poaceae (average 6.26%), Cerealia and other crop plants (average 7.68%) are other prominent taxa in the pollen rain. The nearly complete absence of members of tropical dry deciduous forests in the pollen spectra likely is due to the fact that most species in this vegetation type are not wind pollinated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号