首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Intensity of organic matter degradation, assessed by the respiratory electron transport system (ETS) activity, was studied in microplankton, zooplankton, chironomid larvae as the dominant group of the macrobenthos, and sediment in mountain lakes of different trophic levels in summer months. The highest ETS activities per unit of surface were observed in sediments. Significantly lower activities were observed in microplankton, and lower still in zooplankton, and chironomids. The total ETS activity m–2 was higher in eutrophic lakes (Jezero na Planini pri Jezeru and Krnsko jezero) than in oligotrophic ones (Zgornje Kriko jezero, Spodnje Kriko jezero, Jezero v Ledvicah). The contributions of communities investigated to total ETS activity m–2 differed between lakes of different trophic level. Estimation of respiratory carbon loss through different components revealed that the most of the organic matter was oxidized in sediments of mountain lakes. The respiratory carbon losses were higher through zooplankton than through microplankton in all lakes. Carbon losses through plankton components and sediments were significantly lower in oligotrophic than in eutrophic lakes. The contribution of respiratory carbon loss through chironomids to total carbon loss m–2 was higher in oligotrophic than in eutrophic lakes. Therefore, it seems that contributions of microplankton and zooplankton to mineralization processes increase, and contributions of chironomids and sediment surface decrease with increasing trophic level of the lakes.  相似文献   

2.
Mnemiopsis leidyi: larvae depend on microplankton (<200 µm) prey duringthe first few days following hatching until larvae are >0.5mm in length and can successfully capture and consume mesozooplanktonprey. Feeding and growth rates of newly hatched M. leidyi larvaewere measured in controlled laboratory experiments. When fednatural microplankton assemblages, newly hatched larvae consumedsignificant quantities of both autotrophic and heterotrophicprey, including diatoms, phototrophic, heterotrophic and mixotrophicdinoflagellates, euglenoid flagellates, aloricate and tintinnidciliates, and rotifers. Average per capita clearance rates were1.99–7.59 mL individual–1 h–1 ( = 4.01 mL individual–1 h–1; SD = 1.95)and total per capita ingestion was 0.01–4.70 µgC individual–1 day–1 x 102 ( = 0.83 µg C individual–1 day–1 x 102; SD =1.89). Larval growth rates were –0.13 to 0.56 mm individual–1day–1 (equivalent to –1.72 to 4.33 µg C individual–1day–1) over a range of larval sizes from 0.5 (<0.5µg C) to 5 mm (85 µg C). A diet consisting entirelyof microplankton prey supported larval growth for >2 weeks,and growth rate decreased when larvae reached 4–5 mm inlength, corresponding to the beginning of their morphologicaltransition from tentaculate to lobate feeding mode. The grossgrowth efficiency of larvae fed natural microplankton assemblageswas 3%.  相似文献   

3.
Simultaneous ingestion and egg production experiments were conductedwith female Calanus finmarchicus in April/May and July/August2002 in the Irminger Sea. Experimental animals were providedwith natural microplankton food assemblages and incubated underin situ conditions for 24 h. The quantity of food consumed wassignificantly related to the concentration of prey cells, withtotal daily ingestion rates ranging from 0.6 to 8.1 µgof carbon female–1 day–1, corresponding to carbon-specificrates of 0.6–4.7% day–1. Egg production rates (EPRs)remained relatively low (0.3–11 eggs female–1 day–1)during both periods of investigation and were not influencedby food availability. The data were used to construct energeticbudgets in which the microplankton carbon ingested, includingciliates, was compared with the carbon utilized for egg productionand respiration. These budgets showed that ingestion alone couldnot provide the necessary carbon to sustain the observed demandsfor growth and metabolism. Although ciliates constituted >80%of the total material ingested at times, they were not sufficientto provide the metabolic shortfall. Indeed, the females weretypically lacking 5 µg of carbon each day, 5% of theircarbon biomass. Our study results highlight the possible importanceof internal reserves in sustaining reproduction in C. finmarchicusduring periods of food scarcity.  相似文献   

4.
Urea regeneration by size-fractionated plankton was measuredover an annual cycle at a coastal station in the permanentlywell-mixed waters of the western English Channel. Rates of urearegeneration in the <200 µm fraction varied from 0.6to 20.6 nmol N L–1 h–1. Regeneration rates werelowest in winter and highest in summer. The ratio of the ratesof regeneration to uptake of urea was close to 1 on all time(seasonal and nycthemeral), and space (vertical) scales indicatingthat regeneration by microheterotrophs supplied the totalityof urea used by phytoplankton. On an annual basis, urea regeneratedby the microheterotrophs (0.98 mol N m–2 year–1)was equivalent to 33% of the total regenerated N (urea + ammonium).The major part of urea regeneration was due to the nanoplankton(51%) and microplankton fractions (36%). Regeneration of ureain the picoplankton was detectable only from April to Octoberand represented, on an average, 25% of the total urea regeneratedduring this period. Urea regeneration in micro- and nanoplanktonfractions was mainly associated with ciliates and in the picoplanctonfraction with bacteria.  相似文献   

5.
The role of the Na+ pump2-subunit in Ca2+ signaling was examined inprimary cultured astrocytes from wild-type(2+/+ = WT) mouse fetuses and thosewith a null mutation in one [2+/ = heterozygote (Het)] or both [2/ = knockout (KO)] 2 genes. Na+ pump catalytic() subunit expression was measured by immunoblot; cytosol[Na+] ([Na+]cyt) and[Ca2+] ([Ca2+]cyt) weremeasured with sodium-binding benzofuran isophthalate and fura 2 byusing digital imaging. Astrocytes express Na+ pumpswith both 1- (80% of total ) and2- (20% of total ) subunits. Het astrocytesexpress 50% of normal 2; those from KO express none.Expression of 1 is normal in both Het and KO cells.Resting [Na+]cyt = 6.5 mM in WT, 6.8 mMin Het (P > 0.05 vs. WT), and 8.0 mM in KO cells(P < 0.001); 500 nM ouabain (inhibits only2) equalized [Na+]cyt at 8 mMin all three cell types. Resting[Ca2+]cyt = 132 nM in WT, 162 nM in Het,and 196 nM in KO cells (both P < 0.001 vs. WT).Cyclopiazonic acid (CPA), which inhibits endoplasmic reticulum (ER)Ca2+ pumps and unloads the ER, induces transient (inCa2+-free media) or sustained (in Ca2+-repletemedia) elevation of [Ca2+]cyt. TheseCa2+ responses to 10 µM CPA were augmented in Het as wellas KO cells. When CPA was applied in Ca2+-free media, thereintroduction of Ca2+ induced significantly largertransient rises in [Ca2+]cyt (due toCa2+ entry through store-operated channels) in Het and KOcells than in WT cells. These results correlate with published evidencethat 2 Na+ pumps andNa+/Ca2+ exchangers are confined to plasmamembrane microdomains that overlie the ER. The data suggest thatselective reduction of 2 Na+ pump activitycan elevate local [Na+] and, viaNa+/Ca2+ exchange, [Ca2+] in thetiny volume of cytosol between the plasma membrane and ER. This, inturn, augments adjacent ER Ca2+ stores and therebyamplifies Ca2+ signaling without elevating bulk[Na+]cyt.

  相似文献   

6.
TheNa+-K+-ATPase is a heterodimeric plasmamembrane protein responsible for cellular ionic homeostasis in nearlyall animal cells. It has been shown that some insect cells (e.g., HighFive cells) have no (or extremely low)Na+-K+-ATPase activity. We expressed sheepkidney Na+-K+-ATPase - and -subunitsindividually and together in High Five cells via the baculovirusexpression system. We used quantitative slot-blot analyses to determinethat the expressed Na+-K+-ATPase comprisesbetween 0.5% and 2% of the total membrane protein in these cells.Using a five-step sucrose gradient (0.8-2.0 M) to separate theendoplasmic reticulum, Golgi apparatus, and plasma membrane fractions,we observed functional Na+ pump molecules in each membranepool and characterized their properties. Nearly all of the expressedprotein functions normally, similar to that found in purified dogkidney enzyme preparations. Consequently, the measurements describedhere were not complicated by an abundance of nonfunctionalheterologously expressed enzyme. Specifically, ouabain-sensitive ATPaseactivity, [3H]ouabain binding, and cation dependencieswere measured for each fraction. The functional properties of theNa+-K+-ATPase were essentially unaltered afterassembly in the endoplasmic reticulum. In addition, we measuredouabain-sensitive 86Rb+ uptake in whole cellsas a means to specifically evaluateNa+-K+-ATPase molecules that were properlyfolded and delivered to the plasma membrane. We could not measure anyouabain-sensitive activities when either the -subunit or -subunitwere expressed individually. Immunostaining of the separate membranefractions indicates that the -subunit, when expressed alone, isdegraded early in the protein maturation pathway (i.e., the endoplasmicreticulum) but that the -subunit is processed normally and deliveredto the plasma membrane. Thus it appears that only the -subunit hasan oligomeric requirement for maturation and trafficking to the plasma membrane. Furthermore, assembly of the - heterodimer within theendoplasmic reticulum apparently does not require a Na+pump-specific chaperone.

  相似文献   

7.
Certain angina and coronary artery disease forms do not respond to Ca2+ channel blockers, and a role for vasoactive eicosanoids such as PGF2 in Ca2+ antagonist-insensitive coronary vasospasm is suggested; however, the signaling mechanisms are unclear. We investigated whether PGF2-induced coronary smooth muscle contraction is Ca2+ antagonist insensitive and involves activation of a PKC-dependent pathway. We measured contraction in single porcine coronary artery smooth muscle cells and intracellular free Ca2+ concentration ([Ca2+]i) in fura 2-loaded cells and examined cytosolic and particulate fractions for PKC activity and reactivity with isoform-specific PKC antibodies. In Hanks' solution (1 mM Ca2+), PGF2 (10-5 M) caused transient [Ca2+]i increase followed by maintained [Ca2+]i increase and 34% cell contraction. Ca2+ channel blockers verapamil and diltiazem (10-6 M) abolished maintained PGF2-induced [Ca2+]i increase but only partially inhibited PGF2-induced cell contraction to 17%. Verapamil-insensitive PGF2 contraction was inhibited by PKC inhibitors GF-109203X, calphostin C, and -PKC V1-2. PGF2 caused Ca2+-dependent -PKC and Ca2+-independent -PKC translocation from cytosolic to particulate fractions that was inhibited by calphostin C. Verapamil abolished PGF2-induced -but not -PKC translocation. PMA (10-6 M), a direct activator of PKC, caused 21% contraction with no significant [Ca2+]i increase and -PKC translocation that were inhibited by calphostin C but not verapamil. Membrane depolarization by 51 mM KCl, which stimulates Ca2+ influx, caused 36% cell contraction and [Ca2+]i increase that were inhibited by verapamil but not GF-109203X or calphostin C and did not cause - or -PKC translocation. Thus a significant component of PGF2-induced contraction of coronary smooth muscle is Ca2+ antagonist insensitive, involves Ca2+-independent -PKC activation and translocation, and may represent a signaling mechanism of Ca2+ antagonist-resistant coronary vasospasm. eicosanoids; calcium; vascular smooth muscle  相似文献   

8.
Ratios of GDH activity: NH4+ excretion and ETS activity: oxygenconsumption were measured in western Gulf of Mexico zooplanktonand averaged 18.7 ? 4.3 and 2.65 ? 0.55, respectively. Theseratios were used to estimate NH4+ excretion and respirationrates of two natural zooplankton assemblages sampled quantitativelyfor GDH and ETS activity with a Multiple Opening and ClosingNet and Environmental Sensing System (MOCNESS). Greater than80% of the total GDH and ETS activity 0–200 m was concentratedin depth strata above the chlorophyll maximum, suggesting astrong zooplankton-phytoplankton grazing interaction. GDH activityper unit of zooplankton protein biomass was 3-fold greater inthe upper 100 m than between 100 – 200 m, while ETS activityper unit of zooplankton protein biomass showed no consistentpattern with increasing depth. O:N metabolic quotients wereestimated for the zooplankton sampled with the MOCNESS by ratioingGDH-excretion and ETS-respiratory by atoms. Lowest O:N quotientsoccurred in depth strata above the chlorophyll maximum, suggestinga predominance of protein-based grazing and/or predation. 1Contribution No. 81-013 from the Bigelow Laboratory for OceanSciences  相似文献   

9.
A Ras-related NTP-binding protein was partially purified froma membrane fraction derived from the mycelia of Neurospora crassa.[-32P]ATP and [-32P]GTP were incubated with mem brane and solublefractions which were then irradiated with UV light to inducecrosslinking of tightly bound nucleotides. After SDS-polyacrylamidegel electrophoresis, blotting onto a nitrocellulose filter andautoradiography it was apparent that most of the proteins thatbound [-32P]-GTP also bound [-32P]ATP. Pretreatment of the membranefraction with Ras-specific antibody effectively blocked thebinding of [-32P]ATP and [-32P]GTP to several ATP-GTP-bindingproteins. The band of a protein with a molecular weight of 26kDa on the SDS-polyacrylamide gel cross-reacted strongly withthe Ras-specific antibody. The protein was extracted from thegel and further purified by repeated gel electrophoresis. Thepurified protein bound [-32P]ATP, [-32P]-GTP, [-32P]CTP and[-32P]UTP at 1.6x10 M and was autophosphorylated in thepresence of [-32P]ATP and [-32P]GTP at 1.7x10 M. Pretreatmentof the protein with Ras-specific antibody partially blockedthe autophosphorylation in the presence of these nucleotides.The binding of [-32P]ATP to the NTP-binding protein was blockedby addition of ATP at 10–4–10–3 M. ATP ata concentration of 10–4 M prevented the binding of [-32P]to a greater extent than did GTP at the same concentration.Binding of [-32P]CTP and [-32P]UTP to the protein was also observed. (Received October 7, 1991; Accepted July 14, 1992)  相似文献   

10.
-Glucans (average mol wt, 1.3 ? 104) extracted with perchloricacid from 8-day-old suspension-cultured nonglutinous (var. Sasanishiki)and glutinous rice (var. Miyakogane) cells were compared. Theresults of hydrolysis by alpha;-, ß- and iso-amylasesand methylation analysis of the -glucans suggested that theirbasic structures are almost the same. These -glucans are highly-branchedpolysaccharides with an average chain length of about 9–10,with exterior and interior chain lengths of about 6–7and 2–3, respectively. 1Current address: Laboratory of Food Science, Faculty of Education,Hirosaki University, Hirosaki, Aomori 036, Japan. (Received April 27, 1987; Accepted March 2, 1988)  相似文献   

11.
The relative expression of 1 - and 2-Na+/K+-ATPase isoforms found in vascular smooth muscle is developmentally regulated and under hormonal and neurogenic control. The physiological roles of these isoforms in vascular function are not known. It has been postulated that the 1-isoform serves a "housekeeping" role, whereas the 2-isoform localizes to a subsarcolemmal compartment and modulates contractility. To test this hypothesis, isoform-specific gene-targeted mice in which the mRNA for either the 1- or the 2-Na+/K+-ATPase isoform was ablated were utilized. Both of these knockouts, and , are lethal; the latter dies at birth, which allows this neonatal aorta to be studied. Isometric force in -aorta was more sensitive to contractile agonists and less sensitive to the vasodilators forskolin and sodium nitroprusside (SNP) than wild-type (WT) aorta; -aortas had intermediate values. In contrast, neonatal -aorta was similar to WT. Western blot analysis indicated a population of 70% 1- and 30% 2-isoforms in the WT. Thus in terms of the total Na+/K+-ATPase protein, the -aorta (at 70%) would be similar to the -aorta (at 65%) but with a dramatically different phenotype. These data suggest that individual -isoforms of the Na+/K+-ATPase differ functionally and that the 2-isoform couples more strongly to activation-relaxation pathways. Three-dimensional image-acquisition and deconvolution analyses suggest that the 2-isoform is distributed differently than the 1-isoform. Importantly, these isoforms do not localize to the same regions. sodium; potassium; ATPase; contraction; transgenic  相似文献   

12.
Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase   总被引:2,自引:0,他引:2  
Ouabain binding toNa+/K+-ATPase activates Src/epidermal growthfactor receptor (EGFR) to initiate multiple signal pathways thatregulate growth. In cardiac myocytes and the intact heart, the earlyouabain-induced pathways that cause rapid activations of ERK1/2 alsoregulate intracellular Ca2+ concentration([Ca2+]i) and contractility. The goal of thisstudy was to explore the role of caveolae in these early signalingevents. Subunits of Na+/K+-ATPase were detectedby immunoblot analysis in caveolae isolated from cardiac myocytes,cardiac ventricles, kidney cell lines, and kidney outer medulla byestablished detergent-free procedures. Isolated rat cardiac caveolaecontained Src, EGFR, ERK1/2, and 20-30% of cellular contents of1- and 2-isoforms ofNa+/K+-ATPase, along with nearly all ofcellular caveolin-3. Immunofluorescence microscopy of adult cardiacmyocytes showed the presence of caveolin-3 and -isoforms inperipheral sarcolemma and T tubules and suggested their partialcolocalization. Exposure of contracting isolated rat hearts to apositive inotropic dose of ouabain and analysis of isolated cardiaccaveolae showed that ouabain caused 1) no change in totalcaveolar ERK1/2, but a two- to threefold increase in caveolarphosphorylated/activated ERK1/2; 2) no change in caveolar 1-isoform and caveolin-3; and 3) 50-60%increases in caveolar Src and 2-isoform. These findings,in conjunction with previous observations, show that components of thepathways that link Na+/K+-ATPase to ERK1/2 and[Ca2+]i are organized within cardiac caveolaemicrodomains. They also suggest that ouabain-induced recruitments ofSrc and 2-isoform to caveolae are involved in themanifestation of the positive inotropic effect of ouabain.

  相似文献   

13.
In vitrorates of gross and net oxygen production were measuredas a function of light intensity in some plankton communitiescollected from Bedford Basin, Nova Scotia, and in a monoclonalculture of Synechococcus. The rate of gross oxygen productionwas measured by a technique in which the stable oxygen isotope,18O, serves as a photosynthetic tracer Net oxygen productionwas measured by automated Winkler technique. The rate of communityrespiration in the light was then determined by the differencebetween gross and net rates of oxygen production. In the naturalpopulations examined, neither gross nor net oxygen productionrates were significantly inhibited at the highest light intensitymeasured (500–800 µE m–2 s–1) In a samplein which the dark respiration rate was small relative to themaximal rate of production [Pmax;sensu Platt et al (1980) JMar. Res., 38, 687–701] the rates of ‘light’respiration were 3 times greater. In two other communities,with high rates of dark respiration relative to Pmaxthe ratesof ‘light’ respiration were closer to rates of darkrespiration. In the Synechococcus clone, both gross and netoxygen production rates were inhibited at high light intensities.Rates of ‘light’ respiration were found to varyas a function of light intensity. The greatest rates of respirationwere measured in samples incubated at light intensities thatwere just saturating (100 µE m–2 s–1). Therates of 14C production were also measured as a function oflight intensity The photosynthetic quotients, based on 14C productionrates and gross oxygen production rates, average 1 9  相似文献   

14.
N-Acetylglucosamine 1-phosphotransferase is a key enzyme requiredfor synthesis of the mannose 6-phosphate recognition markerthat is used by many newly made acid hydrolases for their transportto lysosomes. It has previously been found that lymphoid cellsfrom patients with I-cell disease and pseudo-Hurler polydystrophyhave nearly normal intracellular and intralysosomal activitiesof several lysosomal acid hydrolases, despite a deficiency ofN-acetylglucosamine 1-phosphotransferase. These results suggestthat lymphoid cells may provide an important system to investigatealternate mechanisms for targeting newly made acid hydrolasesto lysosomes. In the present study, the biosynthesis, processingand secretion of -L-fucosidase in I-cell and pseudoHurler lymphoidcells was used as a model system to study the existence of suchmechanisms. The level of intracellular -L-fucosidase proteinin exponentially growing I-cell or pseudo-Hurler lymphoid cultureswas statistically indistinguishable from the mean of 19 controlcultures. A 1.5 h [35S]methionine pulse experiment showed that-L-fucosidase is initially sythesized by I-cell, pseudo-Hurlerand control cultures as an intracellular form (Mr = 58 000).Companion cultures chased with methionine from 2 to 21 h processedthe enzyme to an intracellular form (Mr = 60 000) and an extracellularform (Mr = 62 000). All enzyme forms were glycoproteins withpolypeptide chains of Mr 52 000. In control cells incubatedwith radioactive inorganic phosphate (32Pi), <1% of the 32Piincorporated into -L-fucosidase was associated with carbohydratechains and >99% with polypeptide chains. In I-cell diseaselymphoid cells, the 32Pi incorporated into -L-fucosidase wasassociated solely with polypeptide chains. A qualitative analysisof phosphorylated residues identified phosphoserine in -L-fucosidasefrom control and I-cell lymphoid cells. Only -L-fucosidase fromcontrol cells contained mannose 6-phosphate. These results areconsistent with the proposal that I-cell lymphoid cells mayuse a mannose 6-phosphate-independent mechanism for routing-L-fucosidase. Additional metabolic labelling experiments demonstratedthe presence of 32P-labelled -L-fucosidase in both cells andmedium of a control lymphoid culture, but only in cells of anI-cell lymphoid culture. In contrast, -L-fucosidase labelledwith [35S]methionine was found in cells and medium of controland I-cell lymphoid cultures. Since phosphoserine was only foundto occur in intracellular, but not in extracellular -L-fucosidaseof the I-cell culture, we speculate that phosphoserine may beinvolved in intracellular retention of -L-fucosidase in I-celllymphoid cells. -L-fucosidase I-cell disease lymphoid cells phos-phorylation pseudo-Hurler polydystrophy  相似文献   

15.
Inorganic phosphorus uptake and regeneration in the OkhotskSea waters were investigated in July–August 1994 withthe use of radioisotopic techniques. The rates of PO4-P uptakeby microplankton in the upper mixed layer were between 1.5 and6.6 µg P l-1 day-1 (average 2.75) in areas of diatom dominance,and between 0.68 and 1.68 µg P l-1 day-1 (average 1.16)in areas of intense warming and summer phytoplankton minimum.The residence time of PO4-P standing stock in water at differentstations varied between 1.5 and 24 days (mean 9 days). The shareof bacterioplankton contributing to total PO4-P uptake was 50%in areas of the summer phytoplankton minimum and 20–30%in areas of diatom dominance. The PO4-P regeneration rate wasmeasured first time experimentally in the temperate sea. Itsrates varied from 0.30 to 1.65 µg P l-1 day-1. In areasof diatom dominance, it compensated with 30–60% of PO4-Puptake. In zones of summer phytoplankton minimum and in thelayers of deep chlorophyll maxima at 10–25 m depths, thePO4-P regeneration rate often exceeded its uptake. Primary phytoplanktonproduction correlated well with PO4-P uptake values in the uppermixed layer, while no correlation was found between primaryproduction and the ambient PO4-P content in water.  相似文献   

16.
The influences of the gastric H+/K+ pump on organelle pH during trafficking to and from the plasma membrane were investigated using HEK-293 cells stably expressing the - and -subunits of human H+/K+-ATPase (H+/K+-, cells). The pH values of trans-Golgi network (pHTGN) and recycling endosomes (pHRE) were measured by transfecting H+/K+-, cells with the pH-sensitive GFP pHluorin fused to targeting sequences of either TGN38 or synaptobrevin, respectively. Immunofluorescence showed that H+/K+-ATPase was present in the plasma membrane, TGN, and RE. The pHTGN was similar in both H+/K+-, cells (pHTGN 6.36) and vector-transfected ("mock") cells (pHTGN 6.34); pHRE was also similar in H+/K+-, (pHRE 6.40) and mock cells (pHRE 6.37). SCH28080 (inhibits H+/K+-ATPase) caused TGN to alkalinize by 0.12 pH units; subsequent addition of bafilomycin (inhibits H+ v-ATPase) caused TGN to alkalinize from pH 6.4 up to a new steady-state pHTGN of 7.0–7.5, close to pHcytosol. Similar results were observed in RE. Thus H+/K+-ATPases that trafficked to the plasma membrane were active but had small effects to acidify the TGN and RE compared with H+ v-ATPase. Mathematical modeling predicted a large number of H+ v-ATPases (8,000) active in the TGN to balance a large, passive H+ leak (with PH 103 cm/s) via unidentified pathways out of the TGN. We propose that in the presence of this effective, though inefficient, buffer system in the Golgi and TGN, H+/K+-ATPases (estimated to be 4,000 active in the TGN) and other transporters have little effect on luminal pH as they traffic to the plasma membrane. pHluorin; H+ v-ATPase; trans-Golgi network; organelle pH; H+ permeability  相似文献   

17.
Neuronal7 nicotinic acetylcholine receptors (nAChRs) arepermeable to Ca2+ and other divalent cations. Wecharacterized the modulation of the pharmacological properties ofnondesensitizing mutant (L247T andS240T/L247T) 7 nAChRs bypermeant (Ca2+, Ba2+, and Sr2+) andimpermeant (Cd2+ and Zn2+) divalent cations.7 receptors were expressed in Xenopus oocytes and studied with two-electrode voltage clamp. Extracellular permeant divalent cations increased the potency and maximal efficacy of ACh,whereas impermeant divalent cations decreased potency and maximalefficacy. The antagonist dihydro--erythroidine (DHE) was a strongpartial agonist of L247T andS240T/L247T 7 receptors in thepresence of divalent cations but was a weak partial agonist in thepresence of impermeant divalent cations. Mutation of the"intermediate ring" glutamates (E237A) inL247T 7 nAChRs eliminated Ca2+conductance but did not alter the Ca2+-dependent increasein ACh potency, suggesting that site(s) required for modulation are onthe extracellular side of the intermediate ring. The difference betweenpermeant and impermeant divalent cations suggests that sites within thepore are important for modulation by divalent cations.

  相似文献   

18.
Previous studies showed the presence of a significant fraction of Na+-K+-ATPase -subunits in cardiac myocyte caveolae, suggesting the caveolar interactions of Na+-K+-ATPase with its signaling partners. Because both - and -subunits are required for ATPase activity, to clarify the status of the pumping function of caveolar Na+-K+-ATPase, we have examined the relative distribution of two major subunit isoforms (1 and 1) in caveolar and noncaveolar membranes of adult rat cardiac myocytes. When cell lysates treated with high salt (Na2CO3 or KCl) concentrations were fractionated by a standard density gradient procedure, the resulting light caveolar membranes contained 30–40% of 1-subunits and 80–90% of 1-subunits. Use of Na2CO3 was shown to inactivate Na+-K+-ATPase; however, caveolar membranes obtained by the KCl procedure were not denatured and contained 75% of total myocyte Na+-K+-ATPase activity. Sealed isolated caveolae exhibited active Na+ transport. Confocal microscopy supported the presence of ,-subunits in caveolae, and immunoprecipitation showed the association of the subunits with caveolin oligomers. The findings indicate that cardiac caveolar inpocketings are the primary portals for active Na+-K+ fluxes, and the sites where the pumping and signaling functions of Na+-K+-ATPase are integrated. Preferential concentration of 1-subunit in caveolae was cell specific; it was also noted in neonatal cardiac myocytes but not in fibroblasts and A7r5 cells. Uneven distributions of 1 and 1 in early and late endosomes of myocytes suggested different internalization routes of two subunits as a source of selective localization of active Na+-K+-ATPase in cardiac caveolae. cardiac myocyte; caveolin; oligomer; ouabain; sodium pump  相似文献   

19.
We have previously shown that the ratNa+-K+-ATPase1-isoform is phosphorylated atSer-943 by protein kinase A (PKA) and at Ser-23 by protein kinase C(PKC), which in both cases results in inhibition of enzyme activity. Wenow present evidence that suggests that the phosphorylation of Ser-943by PKA modulates the response ofNa+-K+-ATPaseto PKC. RatNa+-K+-ATPase1 or a mutant in which Ser-943was changed to Ala-943 was stably expressed in COS cells. Theinhibition of enzyme activity measured in response to treatment withthe phorbol ester, phorbol 12,13-dibutyrate (PDBu;106 M), was significantlyreduced in the cells expressing the Ala-943 mutant compared with thatobserved in cells expressing wild-type enzyme. In contrast, for cellsexpressingNa+-K+-ATPase1 in which Ser-943 was mutatedto Asp-943, the effect of PDBu was slightly enhanced. The PDBu-inducedinhibition was not mediated by activation of the adenosine3',5'-cyclic monophosphate/PKA system and was not achievedvia direct phosphorylation of Ser-943. Sp-5,6-DCl-cBIMPS, a specificPKA activator, increased the phosphorylation of Ser-943, and this wasassociated with an enhanced response to PDBu. Thus the effect of PKC onratNa+-K+-ATPase1 is determined not only by theactivity of PKC but also by the state of phosphorylation of Ser-943.

  相似文献   

20.
The Na+/K+-ATPase (NKA) is the main route for Na+ extrusion from cardiac myocytes. Different NKA -subunit isoforms are present in the heart. NKA-1 is predominant, although there is a variable amount of NKA-2 in adult ventricular myocytes of most species. It has been proposed that NKA-2 is localized mainly in T-tubules (TT), where it could regulate local Na+/Ca2+ exchange and thus cardiac myocyte Ca2+. However, there is controversy as to where NKA-1 vs. NKA-2 are localized in ventricular myocytes. Here, we assess the TT vs. external sarcolemma (ESL) distribution functionally using formamide-induced detubulation of rat ventricular myocytes, NKA current (IPump) measurements and the different ouabain sensitivity of NKA-1 (low) and NKA-2 (high) in rat heart. Ouabain-dependent IPump inhibition in control myocytes indicates a high-affinity NKA isoform (NKA-2, K1/2 = 0.38 ± 0.16 µM) that accounts for 29.5 ± 1.3% of IPump and a low-affinity isoform (NKA-1, K1/2 = 141 ± 17 µM) that accounts for 70.5% of IPump. Detubulation decreased cell capacitance from 164 ± 6 to 120 ± 8 pF and reduced IPump density from 1.24 ± 0.05 to 1.02 ± 0.05 pA/pF, indicating that the functional density of NKA is significantly higher in TT vs. ESL. In detubulated myocytes, NKA-2 accounted for only 18.2 ± 1.1% of IPump. Thus, 63% of IPump generated by NKA-2 is from the TT (although TT are only 27% of the total sarcolemma), and the NKA-2/NKA-1 ratio in TT is significantly higher than in the ESL. The functional density of NKA-2 is 4.5 times higher in the T-tubules vs. ESL, whereas NKA-1 is almost uniformly distributed between the TT and ESL. T-tubules; Na+/K+ pump current; ouabain; external sarcolemma; detubulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号