首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation phenomena of electrocatalysts for proton‐exchange membrane fuel cells and their mechanisms are reviewed. Platinum dissolution and redeposition, carbon‐support corrosion, inhomogeneity during start‐up and cell reversal are discussed as factors that influence the degradation of electrocatalysts with relation to electrode potential. Early research findings at the National Institute of Advanced Industrial Science and Technology (AIST), Japan, are mainly used as a basis of discussion. The development of highly durable electrocatalysts using an oxide support based on the results of degradation studies to suppress electrocatalyst degradation is summarized with a main focus on Pt‐deposited Ti4O7 catalysts developed at AIST. The development of high‐CO‐concentration durable anode electrocatalysts is also reviewed. In particular, an electrocatalyst that uses an organic complex as a co‐electrocatalyst with a platinum ruthenium alloy anode electrocatalyst developed at AIST is included as a novel high‐CO‐concentration durable anode electrocatalyst.  相似文献   

2.
A facile strategy to deposit Pt nanoparticles with various metal‐loading densities on vertically aligned carbon nanotube (ACNT) arrays as electrocatalysts for proton exchange membrane (PEM) fuel cells is described. The deposition is achieved by electrostatic adsorption of the Pt precursor on the positively charged polyelectrolyte functionalized ACNT arrays and subsequent reduction by L ‐ascorbic acid. The application of the aligned electrocatalysts in fuel cells is realized by transferring from a quartz substrate to nafion membrane using a hot‐press procedure to fabricate the membrane electrode assembly (MEA). It is shown that the MEA with vertically aligned structured electrocatalysts provides better Pt utilization than that with Pt on conventional carbon nanotubes or carbon black, resulting in higher fuel cell performance.  相似文献   

3.
The interface between the catalyst layer (CL) and the polymer electrolyte membrane (PEM) in a fuel cell has substantial impact on its electrochemical performance. In consequence, there have been growing research activities to engineer this interface to improve the performance of polymer electrolyte membrane fuel cells (PEMFCs). This review summarizes these novel approaches and compares the various techniques. Based on available fuel cell data in the literature, a quantitative comparison of relative improvements due to a micro‐ and nano‐engineered PEM|CL interface is provided. This allows several conclusions: First, regardless of the applied method, a re‐engineering of the PEM|CL interface leads to an improvement of power‐determining parameters, such as mass transport resistances. The latter has hitherto not been clearly connected to the PEM|CL interface and is an important piece of information for future fuel cell development. Second, for patterned membrane surfaces, feature sizes of about 1–10 µm on the membrane surface seem to result in the most significant power density improvement. Third, an engineered PEMCL interface can contribute to extend the fuel cell durability due to enhanced adhesion and contact between the two layers. With this, novel membrane electrode assemblies (MEAs) can be designed that enable significantly higher power densities compared conventional 2D‐layer MEAs.  相似文献   

4.
5.
A simple method was developed to prepare ultra‐low Pt loading membrane electrode assembly (MEA) using vertically aligned carbon nanotubes (VACNTs) as highly ordered catalyst support for PEM fuel cells application. In the method, VACNTs were directly grown on the cheap household aluminum foil by plasma enhanced chemical vapor deposition (PECVD), using Fe/Co bimetallic catalyst. By depositing a Pt thin layer on VACNTs/Al and subsequent hot pressing, Pt/VACNTs can be 100% transferred from Al foil onto polymer electrolyte membrane for the fabrication of MEA. The whole transfer process does not need any chemical removal and destroy membrane. The PEM fuel cell with the MEA fabricated using this method showed an excellent performance with ultra‐low Pt loading down to 35 μg cm?2 which was comparable to that of the commercial Pt catalyst on carbon powder with 400 μg cm?2. To the best of our knowledge, for the first time, we identified that it is possible to substantially reduce the Pt loading one order by application of order‐structured electrode based on VACNTs as Pt catalysts support, compared with the traditional random electrode at a comparable performance through experimental and mathematical methods.  相似文献   

6.
Carbon‐supported precious metal single‐atom catalysts (PM SACs) have shown promising application in proton exchange membrane fuel cells (PEMFCs). However, the coordination principle of the active site, consisting of one PM atom and several coordinating anions, is still unclear for PM SACs. Here, a sequential coordination method is developed to dope a large amount of PM atoms (Ir, Rh, Pt and Pd) into a zeolite imidazolate framework (ZIF), which are further pyrolyzed into nitrogen‐coordinated PM SACs. The PM loadings are as high as 1.2–4.5 wt%, achieving the highest PM loadings in ZIF‐derived SACs to date. In the acidic half‐cell, Ir1‐N/C and Rh1‐N/C exhibit much higher oxygen reduction reaction (ORR) activities than nanoparticle catalysts Ir/C and Rh/C. In the contrast, the activities of Pd1‐N/C and Pt1‐N/C are considerably lower than Pd/C and Pt/C. Density function theory (DFT) calculations reveal that the ORR activity of PM SAC depends on the match between the OH* adsorption on PM and the electronegativity of coordinating anions, and the stronger OH* adsorption is, the higher electronegativity is needed for the coordinating anions. PEMFC tests confirm the active‐site coordination principle and show the extremely high atomic efficiency of Ir1‐N/C. The revealed principle provides guidance for designing future PM SACs for PEMFCs.  相似文献   

7.
8.
9.
Aucore/Ptshell–graphene catalysts (G‐Cys‐Au@Pt) are prepared through chemical and surface chemical reactions. Au–Pt core–shell nanoparticles (Au@Pt NPs) covalently immobilized on graphene (G) are efficient electrocatalysts in low‐temperature polymer electrolyte membrane fuel cells. The 9.5 ± 2 nm Au@Pt NPs with atomically thin Pt shells are attached on graphene via l ‐cysteine (Cys), which serves as linkers controlling NP loading and dispersion, enhancing the Au@Pt NP stability, and facilitating interfacial electron transfer. The increased activity of G‐Cys‐Au@Pt, compared to non‐chemically immobilized G‐Au@Pt and commercial platinum NPs catalyst (C‐Pt), is a result of (1) the tailored electron transfer pathways of covalent bonds integrating Au@Pt NPs into the graphene framework, and (2) synergetic electronic effects of atomically thin Pt shells on Au cores. Enhanced electrocatalytic oxidation of formic acid, methanol, and ethanol is observed as higher specific currents and increased stability of G‐Cys‐Au@Pt compared to G‐Au@Pt and C–Pt. Oxygen reduction on G‐Cys‐Au@Pt occurs at 25 mV lower potential and 43 A gPt?1 higher current (at 0.9 V vs reversible hydrogen electrode) than for C–Pt. Functional tests in direct fomic acid, methanol and ethanol fuel cells exhibit 95%, 53%, and 107% increased power densities for G‐Cys‐Au@Pt over C–Pt, respectively.  相似文献   

10.
11.
A metalorganic gaseous doping approach for constructing nitrogen‐doped carbon polyhedron catalysts embedded with single Fe atoms is reported. The resulting catalysts are characterized using scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray absorption spectroscopy; for the optimal sample, calculated densities of Fe–Nx sites and active N sites reach 1.75812 × 1013 and 1.93693 × 1014 sites cm‐2, respectively. Its oxygen reduction reaction half‐wave potential (0.864 V) is 50 mV higher than that of 20 wt% Pt/C catalyst in an alkaline medium and comparable to the latter (0.78 V vs 0.84 V) in an acidic medium, along with outstanding durability. More importantly, when used as a hydrogen–oxygen polymer electrolyte membrane fuel cell (PEMFC) cathode catalyst with a catalyst loading as low as 1 mg cm‐2 (compared with a conventional loading of 4 mg cm‐2), it exhibits a current density of 1100 mA cm‐2 at 0.6 V and 637 mA cm‐2 at 0.7 V, with a power density of 775 mW cm‐2, or 0.775 kW g–1 of catalyst. In a hydrogen–air PEMFC, current density reaches 650 mA cm‐2 at 0.6 V and 350 mA cm‐2 at 0.7 V, and the maximum power density is 463 mW cm‐2, which makes it a promising candidate for cathode catalyst toward high‐performance PEMFCs.  相似文献   

12.
13.
14.
15.
Nanocrystalline La1‐xSrxCoO3‐δ (LSC) thin films with a nominal Sr‐content of x = 0.4 were deposited on Ce0.9Gd0.1O1.95 electrolyte substrates using a low temperature sol‐gel process. The structural and chemical properties of the LSC thin films were studied after thermal treatment, which included a calcination step and a variable, extended annealing time at 700 °C or 800 °C. Transmission electron microscopy combined with selected‐area electron diffraction, energy‐dispersive X‐ray spectrometry, and scanning transmission electron microscopy tomography was applied for the investigation of grain size, porosity, microstructure, and analysis of the local chemical composition and element distribution on the nanoscale. The area specific resistance (ASR) values of the thin film LSC cathodes, which include the lowest ASR value reported so far (ASRchem = 0.023 Ωcm2 at 600 °C) can be interpreted on the basis of the structural and chemical characterization.  相似文献   

16.
Pt catalysts in polymer electrolyte fuel cells degrade heterogeneously as the catalyst particles are exposed to local variations throughout the catalyst layer during operation. State‐of‐the‐art analytical techniques for studying degradation of Pt catalysts do not possess fine spatial resolution to elucidate such non‐uniform degradation behavior at a large electrode level. A new methodology is developed to spatially resolve and quantify the heterogeneous Pt catalyst degradation over a large area (several cm2) of aged MEAs based on synchrotron X‐ray microdiffraction. PEFC single cells are aged using voltage cycling as an accelerated stress test and the degradation heterogeneity at a micrometer length scale is visualized by mapping Pt catalyst particle size after voltage cycling. It is demonstrated in detail that the Pt catalyst particle size growth is non‐uniform and follows the flow field geometry. The Pt particle size growth is greater in the area under the flow field land, while it is minimal in the area under the flow field channel. Additional non‐uniformity is observed with the Pt particle size increasing more rapidly at the air outlet area than the Pt particle size at the inlet area.  相似文献   

17.
Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs) have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m−2 (based on the projected area of the anode). In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors.  相似文献   

18.
Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM, other properties such as local electronic states, ion diffusion coefficient and surface potential can also be investigated17-22. In this work, electrochemical measurements, Raman spectroscopy, and SPM were used in conjunction with a novel test electrode platform that consists of a Ni mesh electrode embedded in an yttria-stabilized zirconia (YSZ) electrolyte. Cell performance testing and impedance spectroscopy under fuel containing H2S was characterized, and Raman mapping was used to further elucidate the nature of sulfur poisoning. In situ Raman monitoring was used to investigate coking behavior. Finally, atomic force microscopy (AFM) and electrostatic force microscopy (EFM) were used to further visualize carbon deposition on the nanoscale. From this research, we desire to produce a more complete picture of the SOFC anode.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号